بسم الله الرحمن الرحيم
اخوتي الكرام سلام سن السّ عليكم
هذا الكتاب عبارة عن دروس قد جمعتها ونسقتها من مجهود الاخ الكـريم/ فــادي الشبراوي جزاه السّ الف خير...

اللغرض هن الكتاب

1. معرفة بعض المبادئ الاساسية والمهمة عن الكهرباء و الالكترونيات r. r. دراسة المكونات الالكترونية ونظرية عملها وتوصيلها وقرائتها وقياسها

ب. القراءة الكاملة والسليمة للمخططات الخاصة بكل جهازوتتبع العيوب
\&. التعرف على مظاهر العيوب وطرق تتبعها وكيفية اصلاحها
ه. القياس على البارد والساخن
ฯ. المسموح والغير هسموح فى الصيانة

نستهل هذا المنهج ببعض الاساسيات والتعريفات والمفــهيم الاساسـيـة التـى لا غنـى عنهــا والتى تسهل لنا فهـم العلاقات المختلفة بين المكونات الالكترونيـة وتاثير مرور التيـار بـهــا وسيساعدنا هذا الجزء على هتابعة عملنا فى باقى اجزاء المنهج

العناصر الاساسيـة

$$
\begin{aligned}
& \text { ا . ماهى الكهرباء وما هو التيار الكهربى } \\
& \text { r. خطورة الكهرباء والاسعافات الاولية } \\
& \text { 「. } \\
& \text { ٪. قانون اوم }
\end{aligned}
$$

: الكهرباء هـى من اهم مصادر الطاقة النظيفة وهى نوعان :
=كهرباء ديناميكيـة : وهى الناتجـة من المولدات او البطاريات ولها شـكلان للتيـارالنـاتج
عنهـا

ا. تيار مستمر ((البطاريات))
(تيارهتردد ((كهرباء المنازل))
كهرباء استاتيكيـة : وهى الناتجـة من احتـكـاك جـسمين موصـلين للكهربــاء او جـسم موصل والاخر غير موصل وتتكون على شكل شحنات تتجمع على اسطح هذه الاجسام
((التيار الكهربی))
ليس له وجود مباشر ولكنه يستنتج وتظهر تاثيراته عنـد وجـود حمـل بمعنـى ان لـو عنـدى بطاريــة فــان جهــدها معـروف ومكتــوب عليهــا او يقــاس منهـا بواسـطه الفولتميترلكن التيار الخارج منها = صفر لكن فى حالة وجود حمل يبدا مرور تيار فى هذا الحمل حسب معاوقة هذا الحمل والذى يحكـم هـذه العلاقــة هـو قــنون اوم الـذى
سندرسه لاحقا
Y.خطورة الكهرباء والاسعافات الاولية!!|! هذا الجزء مهم جدا ويجب ان يكون ثقافة عامة لنا جميعـا فقـد يتعـرض ای احـد لـصدمة كهربية ويجب اسعافة ((اللهم ارزقنا فوائدها وجنبنا اخطارها))) عندما يتعرض الانسان لملادسة منبع كهربى فهذا معناه ان تيار كهربـى سـيمر فى جـسم الانسان وهذا التيار يتوقف على: أ. جهد المنبع ونوعه وتردده ب.مدى نسبة العزل عن الطرف الاخر من المنبع او الارض ج.نوعية الجسم نفسه ونسبة الاملاح والمعادن فيـه ويمكن تصنيف الاصابة كالاتى
1حدمات كهربائية خفيفة (1 - 1 م مللى امبير) 2صدمات كهربائية متوسطة (9 - •ه مللى امبير) يصاحبها تقلـصات فـى العـضلات واحتمال صعوبة التنفس

3صدمات كهربائية شديدة (•0 - •• ا مللى امـبير) تـؤدى الى اضـطرابات فى القلـب ويمكن ان تؤدى الى الوفاة
4الحروق (اكثر من •• ا مللى امبير) بسيطة او شديدة تؤدى الى ابـادة معظـم طبقـات الجلد وذلك حسب شدة التيار ونوع الجلد

- 5-
((a) \qquad عافات الاوليـ \qquad (الا))
12 1 دفع الرأ س الى الخلف والمصاب نائم على ظهره والرقبة فى وضع مستقيم

3اضرب على المنطقة بين لوحى الكتف للمصاب عـدة ضـربات اذا كــن مجـرى التـنـفس مغلقا

45انفخ فى فم المصاب بفمك مع اغلاق الانف 5انفخ الهواء فى رئتى المصاب ولاحظ ارتفاع الصدر ثم ارفع فمك لتسمح بخـروج الـزفير والاستمرار بعملية النفخ بمعدل Y 1 برة فى الدقيقة الى ان يستعيد المصاب تنفسه الطبيعى

ممــا سـبق يتـضح ان التيــار عبـارة عـن تــابع لفـرق الجهـد وهـو هنــا يتجـهه عكـس سـير الالكترونات ومن المعروف عن الالكترون انه ذو شحنة سالبة ويتجهه من القطب السالب من المنبع الغنى بالالكترونات الى القطب الموجب الغنى بالفجوات الموجبة والالكترون هنا ذكى جدا بحيث انه لا يخرج من القطب السالب الا اذا وجد الطريق للقطـب الموجـب وهويـسلك فى ذلك اسهل الطرق
\&. قانون اوم
اهم قانون فى المبادئ الكهربائيـة وهو يحكم العلاقة بين - 1 -

- 2-مقاومة الحمل
- 3 شدة التيار المسحوب من المنبع والمار فى مقاومة الحمل
حيث ان:

فرق الجهد: هو الفرق فى الشحنات بين نقطتين ويرمز له بالرمزV ووحدة قياسه الفولت المقاومة : هى الممانعة او المعاوقة التى يواجههها التيار عند المرور بجزء معين ويرمـز لهــا بالرمز R ووحدة قياسها الاوم
شدة التيار : هو معدل تدفق الالكترونات فـى حمـل معـين ويرهـز لـهـ بــلرهز ا ووحـدة قياسه الامبير

فولتV = | * R VOLT
 امبير = V / R AMP
 وم g R = V / I OHM

2اجهزة القياس
سنتكلم فى هذا الجزء عن نوعين من الاجهزة المهمين جدا فى شغلنا 1. الافوميتر او الملتيميتر بنوعيه
ץ. الاوسليسكوب (راسم الاشارات)

- الالفوميتر او الملتيميتر

عبارة عن نوعان

النوع الاول : التماثلى (الانالوج)
النوع الثانى : الرقمى (الديجيتال)
النوع الاول : التماثلى (الانالوج)
فكرة عامة
لو وصلنا ملف مكون من عدة لفات بمصدر جهـد مناسب فان هذا الملف سينشا حوله مجــال مغناطيسى و تتنـاسب شدة المجال مع شدة الجهـد المسلط على الملف ولو وضـعنا هـذا الملـف على اكس او عمود فى وضع حر ووضعناه بين قطبى مغناطيس دايــم وسـلطنا نفـس الجـهـد

مرة اخرى فان الملف سيبدا بالانحر اف دورة كاملة •هץ درجة وهذه هى فكرة الموتور لكن لـو وصـلنا الملـف بمؤشـر ووضـعنا يــاى او سوستـة لتحـد مـن حركتـه فانـه سـوف يبـدا بالانحراف بمقدار معين و يتوقف ويتناسب هذا المقدار مع شدة التيار المار فى الملف وهذه هى فكرة جهاز القياس التماثلى

مـندس / فادى الشبر اوى التركيب الدالخلى لا جهزة القياس الاتالو

معنى هذا الكلام ان لكى تتم عملية القياس يجب توفر تيار يمر فى الملف لكى يذحرف؟؟؟ سؤال : لماذا يسمى الجهاز افوميتر ؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟ يوجد جهاز يقيس التيار لذلك يسمى اميتر (Ammeter) يوجد جهاز يقيس الجهد لذلك يسمى فولتميتر (Voltmeter) يوجد جهاز يقيس المعاوقة لذلك يسمى (Ohmmeter)

فاخذن اول ثلاث حروف وسمينا الجهاز (AVO meter (
يوصل الفولتميتر على التوازى لكى نقيس فرق الجهد على مكون معين اما الاميتر فيوصـل بالتوالى لكى نقيس شدة التيار المار فى ای مكـون ای انهمـا يـستخدمان علـى الـساخن اى والكهرباء موصلة اثناء عملية القياس او الاختبار• اما الاوميترفلا يوصل فى الدائرة والكهرباء موصلة حتـى لا يتلـف اى انـه يـستخدم علـى البارد ولا يفضل ان نقيس اى مكون داخل الدائرة لان من الممكن ان يكون المكون الذى اقـوم بقياسه موصل مع مكون اخر فيعطى قرائه مختلفه الصورة التالية تبين طريقة توصيل الفولتميتر والاميترللقياس

هـندس / فادى الشبر اوي

طريقة القياس بالافوميتر . . فى حالة قياس الجهد

اول شئ احدد هل هو جهد مستمر او متغيرواقوم بضبط التدريج عليـه وعادتـا يكتـب امــا تيار هستمرDC Direct Current تيار متردد AC Alternating Current

واضبط على التدريج المراد والقيمة التى تظهر على المؤشر اضربهـا فى حاصل قسمة التدريج المكتوب مقسوما على تدريج الجـهاز نفسه مثال لو انا ضبط التدريج على10 والجهاز عندى مدرج من • الى • ا .والمؤشر وقف عند 1 تكون القيمة هى ^10/10 * ایى مثال اخر

لو انا ضابط التدريج على • هوالجهاز مدرج هن • الى • 1 والمؤشر وقف عند $ا$ عتكون القيمة هى $50 \backslash 10$ *
-
اول شئ نغير وضع المجس الموجب فى الجهـاز وهذا ينطبق علـى عـدد مـن الاجـهـزة فقـط ثــم نــضبط التــدريج ونتكمـل مثــل مــا ســبق مــع ملاحظــة التوصــيل علــى التــوالى

- 3فى حالة قياس المقاومة

جب ان نلاحظ ان كل التدريج يبدا من اليمين الى اليسار ای ان المؤشـر يـشير الى الـصفرفى الجهد والتيار الا فى الاوم يبدا بمالانهاية وينتهى بالصفر وعند قيـاس اى مقاومـة يجـب ان نصفر الجهاز وذلك عن طريق توصيل المجسين وضبط المؤشر على الصفر وذلـك بواسطة مفتاح دائرى موجود فى واجهـة الجهاز لاحظ ايضا ان الطرف السالب للاوميتر هو موجب البطارية الداخلية وسوف تفيدنا هذه المعلومة جدا جدا جدا لاحقا الصورة التالية تبين تركيب الاوميتر من الداخل

(الجزء الثانى من اجهزة القياس))

النوع الثانى : الرقمى (الديجيتال) اشكال مختلفة من الملتيميتر

مهندس / فادى الشبر اوى
هذا النـوع هـو حـصاد التكنولوجيـا الحديثـه حيـث انــه ادق واسـهـل واصـبح يقـيس قـيم اكبرواضيف له العديد من القياسات الاخرى مثل السعة للمكثفات والحث للملفات والتردد والموحدات ودرجة الحرارة وفى بعض الانواع منه اضيف لــه دائـرة تقـيس الترانزيـستور وتحدد اطرافه وهو بذلك استحق لقب ملتيميتر

المخطط الصندوقى للملتيميتر لرقمى

مـندس / فادى الشثبر او ى
ومن اجمل الاشياء التى اضيفت عليه انــه اصـبح اوتـورينج اي انـهـ بــلا تـدريج فلـو اردت قياس جهد معين فيكفى ان تضع مفتاح الاختيار علـى وضـع جهـد والبـاقى علـى الجهــاز يحدد لك قيمة الجهد ويحدد اذا كان DC او AC بدون الحاجـ الى ضبط تد تدريج

> ملحوظة مهمة جدا جدا جدا جدا
!! !!!!!!!!!!

في حالة قياس الاوم تدخل البطارية الداخلية للجهاز فى الدائرة وذلك لتعطى التيار اللازم لاتمام عملية القياس فيجب ان نلاحظ الاتى

- 1- الاجى الاجزة الانالوج موجب الجهاز (الطرف الاحمر) هو سالب البطارية - 2فى الاجهزة الديجيتال موجب الجهاز (الطرف الاحمر) هو موجب البطارية

وسوف نستفيد من هذه المعلومة لاحقا فى عمليات القيـاس
الصورة التاليـة توضح توصيل البطاريـة فى وضع الاوم
 توصيل البطنارية فى الاكالو ج فى وضت الوام

القيـاس فى وضع الجرس
هذا الوضع لا يستخدم للقيـاس بل للتاكد من التوصـيليـة وهويـستخدم اساسـا فـى حـالــة ان
المكان الذى اقيس فيـه ضيق ويتعزر رويـة شاشة الجـهاز لذلك اعتمد على السمع
ملحوظلة هــمة جدا جدا

ممنوع استخدام الافو الانالوج على وضع الاوم فى قياس الاجهزة الديجتال مثل -1الموبايل

2 -

- 4البلاى ستيشن

الى اللقاء مع الجزء الثالث والاخير من اجهزة القياس
((الجزء الثالث من اجهزة القياس))

- 2الاوسليسكوب (راسم الاشارات(

جهاز راسم الاشارة - الاوسشليسكوب

مهندس / فادى الشثبر اوى
يعتبر من اهم اجهزة القياس والاختبار للدوائر الالكترونية واكثـر الاجهـزة دقــة حيـث يمكنه رسم اشارة الدخل والخرج بمنتهى الدقة ويمكـن بـه اختبـار مرحلـة بالكامـل فـى ثوانى ويعتبرالقياس الاساسى لهه والذى يستنتج منه قياسات اخرى هو رسم علاقة بيانيـة بين الجهد والزمن ومنهم نستطيع اسـتنتاج قيمـة الجهــد والـتردد واهـم مــا يحـدد سـعر (الاوسليسكوب عرض النطاق الترددى ای 10MHZ - 20MHZ - 40MHZ

الخ) واهم ما يميزه ان بـه قناتان للقيـاس ای انـه مـن الممكـن ان اراقـب اشــارتين فـى نـــس الوقت مثل الدخل والخرج الدائرة الإلكترونية لجهاز راسم الذْبذـبات.

مهنس / فادى الشبر اوى
الشاشة البيانيـة
الششاشة

مـنـدس / فادى الشثبر او

تتكون الشاشة من اقسام (DIVISIONS) وكل قسم منها يكون طوله 1 سم ويكـون هقسم الى خمس اجزاء وهناك محورين - 1المحور العمودى او الراسى وهو يمثل الجهد وينقسم الى ^ اقسام - 2الدحور الافقى وهو يمثل الزمن وينقسم الى •1 اقسام وطبعا فى السيرفس هانيوال لمعظم الاجهزة اصبح هناك رسم يبين خرج كل مرحلة ويقاس هذا الخرج على نقاط محددة تسمى نقاط اختبار ويرمز لهـا ب (TP) وهـو مـا يـسهـل عملية الصيانة
انتظروا الجزء القادم المقاومة

اهم شئ نستهل بـه موضوعنا المسميات الصحيحة العنصر المقاوم للتيار يسمى(RESISTOR) المعاوقة التى يبديها تسمى(RESISTANCE () تعتـبر المقاومـة هـن اهـم العناصـر الالكترونيـة والمـستخدمة بكثـرة فـى كـل الاجهــزة الالكترونية بلا استثناء وتعرف بانها المعاوقة التى يبـديها موصـل عنـد مـرور تيــار فيـه حيـث يـتم عـن طريقهـا الـتحكم فـى قـيم الجهـود والتيـــرات داخـل هـسارات الـدائرة الالكترونية وتعتبر هى نسبه بين الجهد والتيار وتقاس بوحدة الاوم

طرق تحديد قيمة المقاومة 1طريقة القياس

2معلومات على المقاومة 1طريقة القياس نستخدم فيها الملتيميتر او الافوميتر على وضع الاوم

- 2-معلومات على المقاومة

الطريقة العاديـة وهى ان يكون مكتوب على المقاوهـة قيمتهــا مباشـرة مثـل 100 اوم او 200 K OHM

طريقة الالوان
عبارة عن حلقات ملونـة مكونـة هـن اربـع او خمـس حلقـات كـل حلقـة تمثــل رقـم معـين فمثلا مقاومة الوانها احمر احمر بنى تكون 220 حيث اللون الاول يمثل الاحاد والثانى العشرات والثالث عدد الاصفار واللـون الرابـع يمثــل نـسبـة الخطـا والـصورة الاتيــة تـبين

مـنـدس / فادي الشبر اوي

حقّات الالوان

جدول الو إن المهّاومات

الثالدن المابع Forth band	بالص Multiplier	少 Second digit	 First digit	Color
	$10^{\circ} \mathrm{x}$	0	0	الأسو2
	$10^{1} \mathrm{x}$	1	1	Brown بنب
	$10^{2} \mathrm{x}$	2	2	Red
	$10^{3} \mathrm{x}$	3	3	Orange برتفالد
	$10^{4} \mathrm{x}$	4	4	Yellow in in
	$10^{5} \mathrm{x}$	5	5	Green
	$10^{6} \mathrm{x}$	6	6	Blue
	$10^{7} x$	7	7	بنفmer
	$10^{8} \mathrm{x}$	8	8	Gray رصاصب
	-	9	9	White أبيض
$\pm 5 \%$	0.1 x			Gold ذهبّ
$\pm 10 \%$	0.01 X			Silver
$\pm 20 \%$				No band ب- ب-

هـنـنس / فادى الششبر او ع

وهى الطريقة المستخدمة فى الموبايل والاجهزة الدقيقة وفى هـذه الطريقـة يكـون مكتـوب ثلاث خانات اما تكون ارقام او رقمين ورمز R مثل
221-1وتعنى •r اوم

3R9 - 3R9

ای ان نهاية الاولى مع بداية الثانية وتكون المقاومة الكلية RT $R T=R 1+R 2+R 3$

$$
1 / \mathrm{RT}=1 \backslash \mathrm{R} 1+1 \backslash \mathrm{R} 2+1 \backslash \mathbf{R} 3
$$

اى ان البداية مع البداية والنهاية مع النهاية مـهندس / فادى الثشبر اوى

التوصبل عـى التّو لـى
R1

التوصبل عـى التو ازى
انواع المقاومات
يوجد انواع كثيرة من المقاومات مثـل الثابتـة والمـتغيرة والـضوئية والتـى تتغيربـالحرارة
 \qquad
\qquad

(a) Carbon-compusition
(d) Resismor netwark (simm)

(b) Metal film

(c) Resisor network (surfoce mount)

(c) Chip resistor amtry

(f) Radial lead for PC bourd insertion
انو اع من المقّاومات لثابتة مهندس / فادى الثشبر او ع

> مهنسس / فادى الشبر او ى

يطلق عليه((COIL OR INDUCTOR) ويرمزله بالرمز(() ()

الُمثف المعادى

المحول

هـ متفِر مـنّس / فادى الشُبر اوى

الملف هو عبارة عن عدد معين من اللفات من موصل معين معزول ملفوفـة فـى اتجــاه معــين وهذا الموصل يجب ان يكون معلوم نوعـه وعـدد لفاتـه واتجــاه اللـف ومسساحـة مقطـع هـذا الموصل او السلك وكل هذه العوامل تؤثر فى معامل الحث للملف كما يختلف الحث نتيجـة القلب الملفوف عليـه الملف حتى اذا كان بدون قلب فيعتبر القلـب هنا الهواء نفسه

معامل الحث للملف((INDUCTANCE) الحث هو مقدرة الملف علـى تخـزين الطاقـة وانتاجههـا بـشكل يعـاكس اتجــاه التيـار المـار ((بداخله والتى تسمى القوة الدافعـة الكهربيـة العكسيـة ويقاس بوحدة تـسمى الهنـرى

يستخدم الملف بكثره فى كـثير مـن الـدوائر الالكترونيــة والكهربيـة فـى التنعـيم وازالــة الترددات الغير مرغوب فيها والهارمونيك المصاحبة للتيــار الكهربـى وفىى المـصائد التـى سيتم شرحها لاحقا واهم هذه التطبيقات على الاطلاق المحولات)) TRANSFORMERS () (التى تستخدم فى رفع وخفض الجهد بـض الشكال الملفات

مـوندس / فادى الشثبراوى

طريقة حساب المعاوقة للملفات
اى عنصر فى الدائرة الالكترونيـة يخضع لقانون اوم وقـانون اوم يـشترط ان تكـون المعاوقـة المحسوبة للعنصر مقاسة بوحدة الاوم لذلك كــان يـتعين علينـا ايجـاد علاقــة بــين معامـل الحث والاوم

بفرض ان XL هـ المعاوقة الحثية لملف XL = 2 * ~ * F * L OHM

$$
22 / 7 \text { = ~ القيمة ط (باى(}
$$

وتكون المعوقة الكلية للمف معين

$$
\begin{gathered}
\text { ZL } \\
\text { r(} \mathrm{HL}+\text { + لماوى الجزرالتربيعى }
\end{gathered}
$$

حيث r هى المقاومة الداخلية للسلك المصنوع منه الملف
ملحوظة مهمة جدا

عند قياس الملف بالافوميتر نجده تقريبا صفروذلك لان الافو به بطارية داخلية وهى طبـــا تيار مستمر ای ان التردد يساوى صفر وبالتعويض فى المعادلة السابقة تكون XL تـسلوى

توصيل الملفات فى التوالى والتوازى
تعامل الملفات فى التوالى والتوازى معاملة المقاومة فى الحسابات كما ان بعض الملفات عليها نفس كود الالوان الموجود فى المقاومات الى اللقاء مع الجزء القادم

يطلق عليه(((CAPACITOR))
ويرمز له بالرمز (() ()

رمز المكثف فی الدائرة"
هكثف بدون قطبية $\quad \neq \mid$

مكثف ثله قٌطبية $\quad+$

مكثف منتغير

مـهندس / فادى الششبر اوى

يعتبر المكثف من اهم واخطر عناصر الدائرة الالكترونية حيث انه يقوم بعدد من الوظائف المهمـة والمـؤثرة مثـل التنعـيم للاشـارات تخـزين الطاقـة المـشاركة فـى دوائـر الاختيـار والاصطياد ثبات الجهد............... الخ وايعتبر حوالى 99\% من عيوب الاجهزة الالكترونية سببها المكثف مما يتكون المكثف ؟؟ يتكون المكثف من لوحين من مادة موصلة يفصل بينهما مادة عازلة مثل الهواء الورق الميكـا السراميك..... الخ

ويكون نوع المكثف هو نوع المادة العازلة

سعة الكثئ() (CAPACITANCE ()

 وطبعا مافيش مكثف بالفاراد والا كان حجمه مثل غرفة كبيرة بل نقيس بجزء من الفـاراد مثل () (UF . NF . PF) حيث ان

UF

$=$

$=$ طريقة حساب المعاوقة للمكثفات

كما ذكرنا فى الملفات يجب ان نحول السعة الى اوم

بفرض ان XC *
$X C=1 / 2$ * ~ * F * C
($22 \backslash 7$ =

F

$$
\begin{gathered}
\text { C الترد= } \\
\text { C }
\end{gathered}
$$

=سعة المكثف
وتكون المعاوقة الكلية لمكثف معينZC
R (الجزر التربيعى (مربع + XC مربع XC =
ملحوظة مهمة جدا

عند قياس المكثف بالافوميتر نجد ان المؤشر يتجـه الى قيمة معينـة ثـم يعـود الى مالانهايــة مرة اخرى وهذا لان عند بداية القياس هر تيار من البطارية الداخلية للافو شحنت المكثف وعند ما تم شحن المكثف بجهد يساوى جهد البطارية الداخليـة توقف مرور التيار وبالتالى عاد المؤشر الى سابق وضعة

ولو عوضنا فى المعادلة الخاصة بالمعاوقة السعوية نجد ان معاوقة المكثف فى التيار المستمر تساوى مالانهاية وهو عكس الملف

توصيل المكثفات فى التوالى والتوازى
تعامل المكثفات فى التوالى والتوازى عكس معاملة المقاومة والملـف فـى الحـسابات فــلتوالى يحسب كانه توازى والعكس كيفية تحديد قيمة المكثف -

ظهر الان فى الاسواق اجهزة تقيس سعة المكثف بمنتهى الدقة وهى رخيصة الـثمن لـذلك لن نشير للطريقة القديمة باستخدام الافو الانالوج ومن يريد ان يعرفها يرسـل الى وسـوف اقوم بشرحها باذن اللّ - 2 الكتابة على المكثف نفسه توجد طرق عديدةولكن اشهرها ثلاث طرق - أ ان يكون مكتوب على المكثف السعة والجهد مباشرة - 2-- 3- 3 يكون مكتوب عليه هثلا... 336 , 105 , 102 , 104 (الخ وفى هذة الطريقة ناخذ اول رقمين عدد والثالث عدد اصفار مثلا336 33000000بيكو فراد ونقسم على 100000 لنحول الى ميكرو فتكون القيمة 33 ميكرو فراد اشهر عيوب المكثفات -

- 2 فقد سعة كلى ((تصل السعة الى صفر)) - 3يعمل قفلة داخلية بين اللوحين ((شورت))

مـنـدس / فادى الثشبر اوى

- 6 اشباه الموصلات

من المعروف ان الموا د تنقسم الى قسمين من حيث التوصيلية
مثل الحديد - النحاس - الالومنيوم - الفضة.......... الخ

- 2مواد غير موصلة (عازلة)

مثل الخشب - البلاستيك - الخزفالخ

لكن فى خطوة غيرت شكل التاريخ وقفزت بالتكنولوجيا قفزات جبارة اكتشفت المواد التـى يطلق عليها اشباه الموصلات وهى مواد غير موصلة وغير عازلة وهذه المواد كانـت موجـودة لكن غير مستعملة مثل
 والتطويرالذى حدث اعتمد على التغيير فى شكل المـادة واضـافة بــض المـواد التـى تـسمى الشوائب

وطبعا من المعروف ان ای مادة تكون متعادلة كهربيا ای ان عدد الالكترونات ذات الشحنة السالبة التى تدور حول نواة المادة تساوى عـدد البروتونـات ذات الـشحنة الموجبــة والتـى تسمى ايضا فجوات وهنا ياتى دور العلم لكى يخلط الشوائب ذات نـسبـة الكترونــات اكثـر بالمادة المتعادلة اثناء عمليــة التـصنيع فينـتج عنـدنا مـادة جديـدة سـالبة الـشحنات اى ان

الالكترونات فيها اكثر من البروتونات وهى بذلك تسمى((N - TYPE)

وعند خلط الشوائب ذات نسبـة الكترونات اقل بالمادة المتعادلة اثناء عمليـة التصنيع فينتج عندنا مادة جديدة موجبـة الشحنات اى ان الالكترونـات فيهــا اقـل مـن البروتونـات وهـى

بذلك تسى(() P - TYPE)

وهذه المواد الجديدة هـى نقطــة الانطـلاق الحقيقيــة التـى سـنبنى عليـهـا بـــى المكونــات الحديثة

7 الموحد
ياريت بقى نسبـة التركيز تعلا قوى عشان احنا دخلنا فى الغويط والمهم اتكلمنا عن المادة السالبـة (() - TYPE) وكيفيـة صناعتها وان نسبـة الالكترونات ذات الشحنة السالبة اكثر من البروتونات ذات الشحنـة الموجبـة N = NEGATIVE

وان المادة الموجبة ((P - TYPE) نسبة الالكترونات ذات الشحنة السالبة اقل من البروتونات ذات الشحنة الموجبة

P = POSITIVE

(راجع الجزء السابق اشباه الموصلات)

س : ماذا يحدث لو وضعنا جزء من مادة سالبة بجوار جزء هن مادة موجبة ؟؟ س : ماذا يحدث للمنطقة التى حدث عندها الاتصال ؟؟ هذه المنطة حدها الايمن ملئ بالبروتونـات الموجبـة وحـدها الايـسر ملـئ بالالكترونــات
 السالبة والمادة الموجبة وهذه المنطقة تكون بدون شحنة ای متعادلة كهربيا وتسمى

المنطة العازلة او INSULATING LAYER

س : هاذا يحدث لو مررنا تيار فى هذه الوصلة الثنائية ؟؟ - 1-فى حالة التوصيل الامامى FORWARD BIASED
ای ان المادة الموجبة التى سنطلق عليها الانود ((A)) نوصلها بموجب البطارية و والمادة السالبة التى سنظلق عليها الكاثود (() () نوصلها بسالب البطارية طبعا احنـا (حنـا عـا ان الشحنات المتشابهة متنافرة والمختلفة متجاذبة فعند ذلك تدفق الالكترونـاتـات الموجـودة بكثرة فى سالب البطارية الالكترونات الموجودة فى المادة الـسالبة نحـو المنطقــة العازلــة والبروتونات الموجودة بكثرة فى موجب البطاريـة تـدفع البروتونـــتات الموجـودة فـى المـادة الموجبة نحو المنطقة العازلة فتقل هذه المنظقة حتى يتمكن التيار من المرورهن الموجب الى

الجهد الكافى لمرور التيارفى الوصلة المصنوعة من السيلكون 0,6 فولت الجهد الكافى لمرور التيارفى الوصلة المصنوعة من الجيرمانيوم 0,3 فولت 2-2

ای ان المادة الموجبة التى سنطلق عليها الانود ((A)) نوصلها بسالب البطارية و المـادة
 الالكترونات الموجودة بكثرة فى سالب البطارية البروتونــات الموجـودة فى المـادة الموجبــة بعيـد عـن المنطقـة العازلــة والبروتونــات الموجـودة بكثـرة فـى موجـب البطاريـة تجـذب الالكترونات الموجودة فى المادة السالبة بعيد عن المنطقة العازلة فتكـبر هـذه المنطقـة حتـى تصبح منطقة عازلة كبيرة جدا يتعزر على التيارالمرور فيها لكن عند رفع الجهد الى قيمـة معينة يبدا التيار فى المرور ويسمى هذا الجهد جهد الانهيار اوBEAKDOWN VOLTAGE

فى التوصيل الامامى يمرر تيار وفى التوصيل العكسى لا يمرر تيار

طريقة قياس الموحد

يهمنا فى هذا الجزء معرفة امرين

لن يتم ادراك هذا الجزء المهم الا بعد الالمام التام بجزء اجهزة القياس من الصورة الاتيـة يتضح قصدى

- 1-فى حالة وضع الطرف الاحمر من الافو على الانود الافو الديجيتال----------- يعطى قراءة

الافو الانالوج-_-_-_-_-_لايعطى قراءة
لاحظوضع البطارية الداخليـة فى الحالتين

- 2- فى حالة وضع الطرف الاحمر من الافو على الكاثود

الافو الديجيتال--_-_-_-_-_ لايعطى قراءة
الافو الانالوج----_-_--- يعطى قراءة
لاحظ وضع البطارية الداخلية فى الحالتين
التوحيد
(تحويل التيار المتردد الى تيار مستمر)
((AC TO DC))
درسنا سابقا التيار المتردد والتيار المستمر وعرفنا
التيار المتردد : متغير فى القيمة والاتجاه
التيار المستمر : ثابت القيمة والاتجاه

سؤال : كيف نحول بين النوعين ؟؟

الان سندرس التحويل من التيار المتردد الى التيار المستمروسندرس لاحقا التحويل من المستمر الى المتردد

- 2-توحيد موجة كاملة ((باستخدام موحدين - باستخدام اربعة موحدات) - 1-توحيد نصف موجة ((باستخدام موحد واحد) فى نصف الموجة الموجب يكون الموحد فى الانحيـاز الامـامى ويمـرر التيـار وفى نــف الموجة السالب يكون الموحد فى الانحياز العكسى ولايمرر التياروهكذا - 2توحيد موجة كاملة اولا : باستخدام اربع موحدات

فى نصف الموجة الموجب
الموحد ((D1 - D2 ()) فی الانحياز الامامى

فى نصف الموجة السالب
الموحد ((D3 - D4 ()) فى الانحياز الامامى

وسمى توحيد موجة كاملة لان الموجة كلها النصف الموجب
والنصف السالب يستفاد منها بعكس توحيد النصف موجة

وهذة الطريقة تستخدم فى حالة وجود منبع بثلاث اطراف مثل المحولات المستخدمة فـى بعض الاجهـزة المنزليـة بحيث يـكـون الطـرف الاوسـط عبـارة عـن نقطـة اتـزان فـى الملــف الثانوى للمحول وجهـده يساوى صفر ففى نصف الموجـة الموجب D1 انحياز امامى و D2 انحياز عكسى وفى نصف الموجة السالب D2 انحياز امامى و D1انحياز عكسى التنعيم

هو عملية وضع مكثف بعد دائرة التوحيد وذلك للقضاء على التغير اللحظى الذى يحـدث فى التيار المستمر الموحد من التيـار المتردد وهذا التغير يحدث فـى اللحظـة التـى بـين كـل موجـة والتى تليـها فنستغل خاصيـة الشحن والتفريغ فى المكثف لـسد العجـز والفـراغ بـين الموجات المتتابعـة -8الزينر

يعتبر الزينر من اهم وسائل الحماية للدوائر ذات الحساسيـة العاليـة

تعريفه

يعرف الزينر بانـه موحد عادى لكن نسبـة الشوائب فيـه اكثراثنـاء التصنيع والزينـر هنـا يعمل فى الانحياز العكسى فقط لانهـ ببساطة لو وصل فى الانحيــاز الامـامى سـيعمل كانـهـ

موحد عادى
نظريـة عمل الزينر

يوصل الزينر عادتا بالتوازى مع الدائرة او العنصر المراد حمايته لكن كمـا ذكرنــا بطريقـة عكسيـة اى موجب المنبع على كاثود الزينر وسالب المنبع مع انود الزينر ومادام جـهد المنبع اقل من جـهد الزينر لا يعمل الزينر وكانه غير موجود لكن فى حالة ارتفاع جهـد المنبع عن

جهد الزينرفهنا يبدا الزينر فى العمل وامرار التيار فيهه حتى لا يمر فـى الحمـل او فـى الدائرة المراد حمايتها الى اللقاء فى الجزء القادم الترانزيستور

تجميع وتنسيق عزالدين حسنezonet@hotmail.com

