الـهـهـلـكــة الـعــربـيــة الـبــعـوديـة المؤسسة العامة للتدريب التقني والمهني الإدارة العامة لتصميه وتطوير المناهج

تخصص تقنية التصنيع الفذائي

الأحياء الدقيقة يٌ الأغذية
(عملي)
126 صنع

مقلمهة

الحمد للّه وحده، والصـلاة والسـلام على من لا نبي بعده، مححمد وعلى آله وصحبـه، وبعد :

تسعى المؤسسة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة ِِّ سـوق العمل، ويأتي هذا الاهتمام نتيجة للتوجهات السـديدة من لدن قادة هذا الوطن التي تصب يِّ مجملها نحو إيجاد وطن متصامل يعتمد ذاتياً على موارده وعلى قوة شبابه المسلح بالعلم والإيمـان من أجل الاستمرار قدماً پِ دفـع عجلة التقدم التتموي لتصل بعون الله تعالى لمصـاف الدول المتقدمـة صناعياً.

وقد خطت الإدارة العامة لتصميم وتطوير المناهـج خطوة إيجابية تتفق مع التجارب الدولية المتقدمة ِّض بناء البرامـج التدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سـوق العمل بكافة تخصصـاته لتلبي متطلباته، وقد تمثلت هذه الخطوة ِوْ مشـروع إعداد المعايير المهنية الوطنية الذي يهثل الركيزة الأسـاسية يِّ بنـاء البرامـج التدريبية، إذ تعتمد المعايير ِوْ بنائها على تشـكيل لجان تخصصية تمثل سوق العمـل و المؤسسـة العامـة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مـع الواقع العهلي الذي تفرضها متطلبات سوق العمل، لتخرج هذه اللـجان وٌِ النهاية بنظرة متكاملة لبرنامـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية يٌ تحقيق متطلبـاته الأسـاسيـة.

وتتـاول هذه الحقيبة التـدريبية " الأحياء الدقيقة يِّ الأغذية -عملي " لمتدربي قسم" تقنية التصنيع الغذائي " للكليات التقنية موضوعات حيوية تتـاول كيفية اكتسـاب المهارات اللاززمة لهذا التخصص. والإدارة العامة لتصميهم وتطوير المناهـج وهي تضـع بين يديك هذه الحقيبة التدريبيـة تأمل من الله عز وجل أن تسهم بشكل مباشـر پِ تأصيل المهارات الضرورية اللازمة، بأسلوب مبسط يخلو من التعقيد، وبالاستعانة بالتطبيقات والأشكال التي تدعم عملية اكتسـاب هذه المهارات. والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيدين منها لما يحباه ويرضاه، إنا سميع مجيب

تههيل

عـرف تـأثير الميـكروبـات منــذ قـديم الزمـان حيـث حفــ الإنسـان القـديم غـذاءه مـن الفسـاد بطـرق عديدة كالتجفيف والتمليح، ولكـن علم الميكروبيولوجيـا بوضـعة الحـالي يعتبر مـن الـلـوم الحديثة الـتي برزت إلى العالم منـذ حوالي قرن ونصف تقريبـا ، وهذا العلم يعنى بدراسـة الأحياء الدقيقة عمومـا من حيـث

الشكل والتركيب والخواص الفسيولوجية والمزرعية وأهميتها مـن الناحية الطبية والزراعية والتصنيعية.
 ورفاهيتاه، ولـيس أدل علـى ذلـك مـن اسـتغـلال الميكروبـات ٌِِ كـثير مـن الصناعات الغذائيـة مثـل صـناعة الألبـان ومنتجاتها ، التخخـرات المختلفـة، كهـا أمـكـ إنتـاج الفيتامينـات والإنزيمـات والأحهـاض العضوية وغيرهـا من المنتجات الهامة والـلازمة لكثير من الصناعات.

ولقد وضعة هذه الحقيبة كمقرر تدريبي لمتدربي قسم تقنية التصنيع الغذائي وروعي فيها الآتي: 1- التعرف على مصـادر التلوث.
2- التعرف على شكل المستعمرات البكتيرية والخمائر والفطريات.
3- دراســة بــض الاختبـارات الـتي تجـرى علـى بعـض المنتجـات الغذائيـة للتأكـــد مـن مــدى صـلاحيتها لـلاستهـلاك الآدمي. 4- دراسـة بكتريولوجيا المياه، والتعرف على كيفية معرفة التلوث من عدمـه. 5- ميكروبيولوجيا الأغذية والتو كسينات الميكروبيـة. 6- ميكروبيولوجيا الألبان والميكروبات المرضيـة باللبن.

7- البيئـات والمحاليـل والأدلـة المستخدمـة يٌ إجـراء الاختبـارات الـلازمـة للكشف والتــرف علـى الأحيـاء
الدقيقة.

أن تـشـمل هـذه الحقيبـة أحـدث الطـرق المستتعملة يفْ دراسـة الميـروبيلوجيـا مـن الناحيـة العلميـة، كهــا زودناه بكثير من الأشكال والجداول التي تفيد ِ2ٌ الحياة العمليـة. واللّه ولى التوفيق.

الأحيـاء الدقيقة في الأغذية

الاحتياطات الواجب اتباعها

الوحدة الأولى
 الاحتيـاطات الواجب اتبـاعها في مختبر الأحيـاء الدقيقة في الأغلذية

1- يـنع التدخين أو الأكل أثنـاء العمـل وبالمختبر حيث ان أيدي القائهـين بالعمل من حيـث نـزع السـدادات القطنيـة أو رج العينـات أو أخــذ العينـة بواسـطة الماصـات قـــ تتلـوث بالبـكتريـا وعليـه فـإن التـدخين أو الأكل بهثل هذه الأيدي هي إحدى وسـائل نقل البكتريا إلى الإنسـان وجهازه الهضمي أو التتفسي. 2- يجـب تجنـب وضـع الماصـات المستعهلة علـى المنـضدة أو لمس هــذه الماصـات باليــد حيـث أن سـطـحها
الخارجي دائمـا وأبدا مـا يكـون ملوثاً بالميكروبات التي نقلنـاهـا بها.
3- يجب أن تكـون سطوح طاولات المختبر ملسـاء وذلك لسهولة وفعاليـة تعقيمها.

4- يجب غسـل الأيدي بهـحلول مطهـر أو بالمـاء والـصـابون جيـداً وتجفيفهـا ويجـب أن تكـون الأيـدي جافـة

أثتاء العمل

5- يستعمل خـلاط ذو غطاء محكم دائمـا لخلط العينـات حتى يتجنب نثر أجـزاء مـن العينـة بـالعمـل والـتي
قد تـكون إحدى مسببـات الأمراض.

6- يجـب تفطيـة منطقـة العهـل على طــاولات المختتبر بـأوراق لها قابليـة الامتصـاص أينمـا يكـون احتمـال
انسـكاب المحـاليل التي تحوي البـكتريا المرضيـة أو سمومها.
 وقاتل لـلأحيـاء الدقيقـة ومـن ثم تتقـل إلى محلـول الفسيل وأخيراَ بواسـطة جهـاز التعقيم تحـت درجـات عالية مع كافة اللوازم المستخدمة لتلك الأعمـال ومن ضمنها بالطو المعمل

التعرف على الأجهزة المستخدمة في مختبر الأحيـاء الدقيقة

الكائنـات الحية الدقيقة هي مجموعة من الكائنـات الحيـة متتاهية ٌِِ الصغر لاترى بالعـين المجردة حيث يقل حجهها إلى درجة لا تستطيع معها العين المجردة رؤيتها ، وهي عامة تتكون من خلية واحدة تقـوم بجميـع الوظـائف الحيويـة(الحركـة، التـنفس، التفذيـة، الإخـراج- الـخ) لمـا كـانـت الكائنـات الحيـة الدقيقـة لا يمـكـن مـشـاهدتها بـالعين المجـردة، ومـع عظـم تأثيرهـا على الإنسـان سـواء بـالنفع أو بالـضرر فـكان لا بد من العمل على إيجاد الأجهزة والوسـائل التي تمـكنتا من دراسـة هذه الكائنات الحيـة.
أنواع الأحياء الدقيقة: 1

وتختلـف هــذه الكانئـات الحيـة يِنْ أنواعهـا وتركيبهـا وصـفاتها ، حيث منهـا النــافع لـلإنسـان مثـل بكتريا التخمر(صناعة منتجات الألبان، منتجات الخبيز)، ومنها مـا هو ضار مثل البكتريا المسببـة للفسـاد
الغذائي، والمسببـة للتسمـم الغذائي

يستتخدم للتعـرف علـى الكائنــات الحيـة الدقيقـة حيـث يقـوم بتـكـبير صـورتها بهـا يمـكننـا مـن
دراستها والتعرف على صفاتها ، وكيفية الاستفادة منها.

1- العدسـة العينيـة:Eye piece وهـي الـتي تتبـت وْ الطـرف العلوي يٌ أنبـوب السـحب، وهـي عبـارة عـن عدسـة مركبـة(أي تتكـون من مجموعة من العدسـات).

2- العدسـة الشيئية: Objective piece وهى التي تثبت قٌِ الطرف السفلي يِّ أنبوب السـحب، وهـى عبـارة

عن عدسـة مركبـة (أي تتكون من مجموعة من العدسـات) وهذه العدسـات ذات قوة تكبيرية مختلفة. 3- المسرح:حيث توضع عليها الشـرائح ومزودة بفتحة يِّ مركزهـا ليمـر فيهـا الضوء، وذلـك حتى تـكون

الصورة واضتحة.

4- مصدر للإضاءة: عبارة عن مصدر للضوء طبيعي أو مصدر كهربي.
5- المكثف: يتم عن طريقه التحكم هِ قوة الإضاءة.
والشكل التالي يوضح فيه الميكروسكوب المركب.

(2) الأوتوكلاف (المعقم)
إن معظم الدراســات الميـكروبيولوجيـة تعتهـد على المـزارع النقيـة أي الـتي ينـــو بهـا نـوع واحــد مـن الكائنـات الدقيقة، وهـذه تتطلب لنموهـا بيئات غذائية معقمة. والتعقيم عبـارة عن العمليـات التي مـن شـأنها قتل أو إزالة كل الكائنـات الحيـة الدقيقة من الوسط المراد تعقيمـه سواء كـان ذلك الوسط بيئة غذائية أو هححاليل هحتلفة وأمـاكن أو مسطحات محـدودة يِ أبعادهـا وأحـجامهـا. والأشـيـاء المعقهـة يمـكن الاحتفـاظ بها على صـورة معقهـة طالمـا أمـكـن المحافظـة عليهـا مـن التلـوث الخـارجي وعـادة يـتم التعقيم بـاتبـاع طـرق تعتمـد على أسس فيزيائية أو كيميائية أو ميكانيكيـة. ومن هذه الطرق هي استخخدام الأوتوكـلاف. جهاز الأوتوكـلاف
عبارة عن أسطوانة معدنيـة عـادة تـصنع مـن الـصلب أو هـن سـبائك هعدنيـة قويـة تتحمـل ضـغط قـــ تصل إلى30 رطل/ بوصة؟ على الأقل، لـه غطاء يقفل بإحكام بعد أن توضع بـه المواد المراد تعقيمها، وبعد التأكــد مـن احتـواء الجهـاز علـى المـاء إلى الارتفـاع المناسـبـ مـع تـرك الـصنبور مفتوحـا ثـم يوصـل التيـار الكهربي ويدفع بها بخار الماء، وعندمـا يشاهد البـخار خارجا بشدة من الصنبور فإن هذا يعني خلـو الجهـاز من الهواء وامتالائة بالبخخار. عندئذ يقفل الصنبور جيدا ويترك البخار ينضغط بداخل الجهاز حتى يـصل إلى الـضغط المطلـوب وهـو15 رطل/ بوصـة 「ويعـرف ذـلك بالاسـتعانة بالمـانومتر المتصل بالجهـاز.وبالتـالي يـصل درجة الحرارة إلى 6و 121 مْوعنــد هـذه الـدرجـة يحسبب وقـت التعقيم الـذي يختلف بـاختلاف طبيعـة المـواد وحـجـم المـواد المـراد تعقيههـا. بعــد انتهاء هـدة التعقيهم يغلق الجهـاز ويـترك دون فتتح حتى يـنخفض الـضغط بداخل الجهاز.والشكل التالي يوضح صورة لـلاوتوكـلاض.

صورة جهاز الأوتوكالاف

3icrobiological incubator الحضان الكهريائي
هو جهاز يستخدم پٌ تتمية البيئات الملقحة وذلك عن طريق التحكـم هٌِ درجة الحرارة بواسطة

4- المجفف الكهريائي Drying oven
جهاز يستخدم لتجفيف العينات، الأدوات المستخدمة وذلك للتخلص من أكبر قدر من الرطوبة.

الأحيـاء الدقيقة في الأغلية

مصادر التلوث هِ الأغذية

الجلدارة:التعرف على مصـادر التلوث پِ الأغذية (التربة- الهواء- الماء- الإنسـان- الكـائنات الحية).

الأهلداف:

1- أن يقوم المتدرب بالتعرف على مصادر التلوث المختلفة بعد إجراء الاختبارات الميكروبيولوجية 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها. 3- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـيـحة. مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجـدارة بنسبة95٪٪. الوقتت المتوقِ للتدريب على الجلارة؛ سـاعتان

الوسائل المساعلةة:

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.

2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. 3- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحيـة الدقيقة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي

قام بتتميتها.

2- تحتاج الجدارة الى التدريب مسبقا على كيفية استخخدام الأجهزة التي تستخدم وِّ الاختبار.

انتشار الأحيـاء الدقيقة في الطبيمية (مصادر تلوث الفذاء)

البيئـات المطلوبة:

1- بيئة الأجار المغذي Nutrient agar

تستخدم هـذه البيئـة للحـصول علـى مجـاميع معزولــة مـن البـتريـا ، وهـي تعتبـر مـن أكثـر البيئـات الصلبة شيوعا يِّ الأعمـال البكتريولوجيـة. وهى عبـارة عن بيئة المرق المفذي مضـافا إليها الأجار.

الأدواتوالمواد اللازمة لتحضير البيئة

1- لتر مرق مغذي بدون ضبط الـ pH.

2- أجار أجار.

3- حلة ذات جدارين أو حمـام مـائي.

4- دليل بروم ثيمول الأزرق.

5- صندوق مقارنة الألوان.

6- محلول ص أ يد 1, ع، 9,ع.

7- مـاصـات- سـحاحات- أقمـاع- أنابيب اختبـار - أطباق بتري معقمـة- سـدادات قطنية.
طريقة العمل

1- تحضير المرق المغذي والذي يتكون من
مستخلص لحم3جم، ببتون10جم، وماءمقطر1000مل.
أ- إذابة المكونات يٌٌ الماء ثم الغلي يٌ حهمام مائي ويضبط الـ pH إلى7.

ب- الترشثيح ثم التعبئة يٌ أنابيـب والتعقيم هِّ الأوتوكـلاف على121مْ وتحت ضـغط 15 رطل/ بوصـة
مربعة ولمدة 15دقيقة.

2- يوضـع لـتر مـن المـرق المفـني وٌ الحلـة ذات الجـدارين ويضـاف إليـه 15جـم أجـار أجـار (الأجـار بنسبة (\% $2-1,5$
3- تغلى البيئة حتى يذوب الأجار.

4- إضافة قليلا من الماء لتعويض الفاقد بالتبخير.
5- ضبط الـ pH إلى7.

6- ترشيح البيئة وهى سـاخنة پٌ مرشح بوخنر مـع استعمال ورق ترشيح مفتت پٌِ ماء سـاخن وعلى شـكـل طبقة بين ورقتي ترشيح يٌ هذا المرشح.

طريقة عمل الاختبـار

1. سيح بيئة الأجار المغني على درجة100 مْ ثم يبرد إلى درجة45 مْ قبل صب الأطباق.
2. صب أطباق بتري المعقمة بالأجار ويوزع الأجـار يٌ هـذه الأطبـاق, وذلك بتحريك الطبق حركـة دائريـة بسيطة باتجـاه عقـرب السـاعة وبعكساه, إلى الأمـام وإلى الخلف بحيـث ينتشر الأجـار ويتوزع توزيعاً منتظماً ويراعى عدم التحريك بقوة حتى لا يتلوث غطاء الطبق بالأجار. 3. يترك الطبق ليبرد الأجار ويصلب. 4. بعد صلابة الأجار يجرى ما يلي: أ) ينثر قليل من التربة على سطح الأجار.

ب) بأيدي أحد العمـال يمسـح سـطح الأجار.

ت)بأحد الأوعية أو الأواني المستعملة يلمس سطح الأجار. ث)تتثر بعض العـلائق على سطح الأجار

ج)يترك أحد الأطباق لمدة نصف سـاعة مكشثوفة للهواء. ح)يكتب على غطاء الطبق نوع المعاملة.

خ) يقلب الطبق بحيث يصير الغطاء إلى لأسفل والقاع إلى الأعلى حتى لا تتسـاقط قطرات الماء المتكشف يِّ الغطاء على سطح الأجار فيعمل ذلك على تداخل المجاميع البكتيرية فلا يمـكن تمييزهـا.

د)توضـع الأطباق بهذه الصورة يٌ الحضـان Incubator على درجة 37 م ملمدة 48 سـاعة ثم يـلاحـظ أشــكال
وأنواع المجاميع النـاميـة على سطح هذا الأجار.

ذ) بعدذلك تفحص كل مجموعة على حدة وذلك بعد مـرفة لون وشـكل وسطح ونوع الحافـة وانتشـار هـذه
المجاميع وذلك بصبغها بطريقة جرام وفحصها ميـكروسـكوبيا.

أمـامـك بيئـة الأجـار المــنـى والمطلـوب اتبـاع الخطـوات المـذكورة ســابقا لإجـراء الاختبـار، ثـم دون

النتائج جِْ الجدول التالي:

الانتشار	نوع الحافة	شكل السطح	الشكل	اللون	نوع التلوث	$\stackrel{ }{ }$
					التربة	1
					لمس أحد العهـال	2
					مسـح الأواني	3
					نثر بعض العـلائق	4
					النفخ	5
					تـرك طبـق معـرض $\text { للـهواء الجـوي } 30$	6
					مسـح الطاولة	7
					طبق بدون معاملة	8

س3: حاول رسـم الأشكـال التي حصلت عليها بعد الاختبـار؟

الأحيـاء الدقيقة في الأغذية

مواصفات المستعمرات البكتيرية

الجلارة:التعرف على المواصفات الخاصة بالمستعمـرات البكتيرية.

الأهلداف:

1- أن يقوم المتدرب بالتدريب على كيفية تحضير البيئات وتعقيمها جيدا.
 2- أن يقوم المتدرب بالتعرف على شكل المستعمرات البكتيرية ووصفها باستخخدام الميكروسكوب

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 95٪. الوقتت المتوقي للتدريب على الجلدارة: سـاعتان.

الوسـائل المســاعلـة

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـللازمة لإجراء الاختتبارات المختلفة.
2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. 3- استخخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحيـة الدقيقة.

متطلبـاتالجلدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.

2- تحتاج الجدارة إلى التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم ٌِ الاختبار.

مواصفات المستعمرات البكتيرية

تتهى البكتريا عادة على بيئات خاصة وتستعمل البيئة لأغراض عديدة فتستعمل لحفظ الميكـروب واستـكثاره ودراسـة خواصه الفسيولوجية وتشـجيعه على إنتاج مواد تستعمل يٌ الأغراض الصنـاعية كإنتاج الكحولات والأحمـاض العضوية وخـافة. والتدريب التالي يعطينا معلومـات حول هذه المستعمرات البكتيرية من حيث:

1- الشكل: دائري- اهليجـي- مغزلـي- مثلـث الأقسـام- قوقعي- غير منتظم- شــكل الـوردة-جذري- خيطي(شكل8).
2- التركيب: حبيبي- متراكمَ حبيبي خشنن- ذو مناطق دائريـة- شـبكي- مغصن- مجعـد- بـه
هجاميع ثانوية.
3- الحافة: كاملة- هدبية- متموجة- مفصصـة- ممزقة.
4- الارتفاع: هسطح- قطري- مرتفع- مدرج- محدب.

6- اللون: لون المجموعة ولون البيئة حولها.
7- الشفافية: نصف شفاف- معتم- شمفافـة.
8- الانتشار : لا حظ مـا إذا كانت المجموعة منتشرة على سطح البيئة أو محدودة.
9- الحجه: يقاس قطر بعض المجاميع بالملليمتر يِّ طبق يحتوي على عدد منها وتختلف المجاميع مـن حيـث الحجم وقد يكون بعضها صغيراً جداً يكاد يرى بـالعين المجردة وِوْ هذه الحالة تفحص المجـاميع بالعدســة اليدوية أو الـ Binocular ارسـم نمـاذج لبعض المجموعات التي ظهرت مع مـلاحظة النقط السـابقة.

شكل(8)أشـكال البكتريا

نهو البكتزيـا والتفيرات الكيمـاوية الحيوية التي تتحلثها في البيئـات العادية. البيئـاتوالأدوات والمواد اللازمة:

1- بيئة المرق المفلّي Nutrient broth
أ- مكونات البيئة: مستخلص لحم3جم، ببتون10جم، ماء مقطر10001سم؟ّ. ب- طريقة التحضير:
1-
2- غلي المكونات صٌِ الحمـام المائي.
3- يسـخن الحمـام المائي حتى الغليان مـع مـلاحظة أن يجب تعويض النقص وٌِ الماء نتيـجة التبخير.
4- تترك البيئة حتى تبرد ، ثم ضبط الـ pH الى7أو277.

5- الترشيح باستعهـال مرشـح بوختر.
6- تعبئة البيئة يِ أنابيب أو دوارق مناسـبـة وتغطى بسـدادات قطنيـة ثم تعقـم ـِْ الاوتوكـلاف على درجـة حرارة121 مْ وتحت ضغط15 رطل/ بوصة مربعة ولمدة15 دقيقة.

2- بيئة الجيلاتيني المفلى Nutrient gelatin broth

الأدواتواتمواد اللاززمة:

الأزرق- مدحــول هيدروكــسيد الــصوديوم 9, ستحاحات- أنابيب اختبار- قهع ترشيح- قطن. طريقة التحضير:

1- ضح المرق المغذى يٌ الحمـام المائي ثم أضف إليه الجيلاتين بنسبة 15٪. 2- سـخن البيئة حتى يذوب الجيلاتين.
3- أضف الماء لتتويض الفاقد بالتبخير.
4- اضبط الـ H أـ ألـ7.

6- املأ الأنابيب بحوالي7سـمّلكـلـي أنبوبة ثم أقفلها بالسدادات القطنية. 7- عقم هٌِ جهاز الأوتوكلاف بالتعقيم المتقطع مدة20 دقيقة على3أيام متتالية.

التحضير مثل بيئة الأإجار الصلبـة فيمـا عدا عند التعبئة تعبـأ كل أنبوبـة بواقـع 5 مـل ثـم تعقـم وبعـد خروجها من جهاز الأوتوكلاف توضـ يِّ وضـع مائل حتى يتصلب الاجار. 4- بيئة لبن دوار الشمس Litmus milk

الأدواتوالمواد اللازمهة:
لبن فرز(مجفف) 100جم، دليل عباد الشهس1 1 جم، ماء مقطر1000 مل تخلط المكونات معا ثم التعقيم پٌْ جهاز الأوتوكـلاف على درجـة حـرارة121 م، لمدة20 دقيقـة وملمد3أيــام متتالية.

5- بيئة أجـارا الجلوكوز العميق

وتحضر كالآتي:
01يحضر 1 لتر من بيئة الأجار المغذى المتعادل والمرشـح.
02إضـافة10جم جلوكوز.
 متتالية.

6- المزارع السـابقة التي حصلت عليها من الدرس السـابق. طريقة العمل

010قح مجموعة البيئات السـابقة بكل نوع من المزارع على حدة 02تحـضن البيئات الـسـابقة على درجـة22 مْ لمـدة شـهر وصـف على فـترات (يوميـاً يِّ الأسـبوع الأول مـرتين أسبوعياً يٌِ المدة الباقية) مـا تحدثه الميكروبات يِغ كـل من البيئات السـابقة على النحو التالي: 1- بيئة المرق المغذي:

لاحظ تكوين غشثـاء على السطح وهل الغشـاء مجعـد أم أملس أم جلـدي أم حلقي وهـل الغشـاء تحت السطح أم فوق السطـح.
لاحظ مـا إذا كانـت البيئـة عكـرة أو رائقـة, هـل يوجــ راسـب أم لا. اختبر قـوام البيئـة لوجود لـزوجة من عدمـه باستتعهـال إبرة التلقيح.

- اختبر الرقم الأيدروجيني للبيئة وقارن ذلك بييئة غير ملقحة. 2- بيئة الجيـلاتين المغذي

تلقح هـذه البيئة بطريقة الوخز وتحضن ووِّحالة عدم إسـالة الجيـلاتين يـلاحظ شـكل النمو فقد

يكون على هيئة كرات صغيرة متصلة. خيطي- سبحي- معرج- هدبي- شـجري. ويِّ حالة إسـالة الجيـلاتين لاحظ شـكل الإسـالة فقد يكون إبريقي- فتجاني. 3- بيئة الأجار المغذي المائل

- لاحظ اللون واللمعان والقوام والشفافية ولون البيئة. 4- بيئة لبن تباع الشمس: لاحظ التفيرات الآتية:

لا تتغير ِ2ْ المظهر.

- تجـبن.

تجـبن مـع ظهور الشـر ش.

- إذابة الختثرة لاحظ لون دليل تباع الشـمس كمـا لاحظ تكـوين فقاقيع غازية من عدمـه. 5- بيئة أجار الجلوكوز العميق

لقح هذه البيئة بالوخز.
لاحظ شكل النمو مثل ٌِِ بيئة الجيـلاتين.
لاحظ مكان النمو فقد يكون سطحياً (هوائي) أو داخل البيئة عنــد القاعـدة فيكـون (لا هـوائي)
أو يِ البيئة عمومـاً فيكون لا هوائيا اختيـارياً ".
والثشكل التالي يوضح شـكل المستعمرات البكتيرية النـامية على البيئة وِْ طبق بتري.(شكل3)

شـكل(3) يبـين شكل البكتريا النـامية ֵِِ طبق بتري.

التلريبب العملي

أمامك البيئات التي قمت بتحضيرهـا وهى:-
1- بيئة المرق المغذي.
2- بيئة الجيـلاتين المفذي.
3- بيئة الأجار المفذي المائل.
4- بيئة لبن دوار الشهس.

5- بيئة أجار الجلوكوز العميق.
والمطلوب اتباع الخطوات التي ذكرت وتدوين النتائج يٌِ الجدول التالي:

التجبن	الثفافية	القوام	اللمعان	اللون	شكل النمو	رقم الـ pH	حالة البيئة		تكوين الغشتاء	نوع البيئة	م
							عكرة	رائقة			
										قر المغذى	1
										الجيـلاتين المفذى	2
										الأجار المغذى المائل	3
										لبن دوار الثمس	4
										أجار جلوكوز عميق	5

التخصص 126 صنع
6- الحـضـان:-
7- المجفــف:-
\qquad
\qquad
\qquad
\square
9- بيئة لـبن دوار الـشـس:-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

الأحيـاء الدقيقة في الأغلية

الفطريات هِّ الأغذية

1- أن يقوم المتدرب بالتعرف على مصادر التلوث المختلفة بعد إجراء الاختبارات الميكروبيولوجية 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيهها. 3- أن يقوم المتدرب باستخدام الميكروسكوب بالطريقة الصحيحة. مستوى الأداء المطلوب:أن يصل المتدرب إلى إتقان الجدارة بنسبة 95٪. الوقت المتوقي للتدريب على الجدارة: سـاعتان.

الوسائل المساعلدة:

1- 1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمة لإجراء الاختبارات المختلفة.
3- استخدام اللوحات التوضيحية المبينة لأشكال الكائنات الحية الدقيقة.

متطلبـاتالجلارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي
قام بتتميتها.
2- تحتاج الجدارة التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم هِّ الاختبار.

الفطريـات في الأغلية

الفطريات تتمو على الطعامو يعرف ذلك بهظهرها الزغبي أو الوبري أو القطني التي تتلون يٌ بعض الأحوال، وقد يتغير لونها إلى اللون الداكن، واللون ينتج لتـكشف الجـراثيم الملونـة وظهورهـا على السطح الذي ينمو عليه الفطر، وعادة الغذاء المصاب بالعفن هذا يكون غير صالح للأكل

عموماً تتتشر الفطريات على نطـاق واسـع ٌِْ الجـو وٌِْ الأطعهـة وخاصـة بالأطعمـة الحامضية منهـا
وإذا تركت الفطريات بهذه الأطعمة فأنها تنمو على سطحها وتسبب فسـادها.

الأدوات والمواد المستعملة:
1-1 بيئة أجار المولت Malt agar
1- مكونات البيئة: مستخلص المولت30جم،أجار20جم، ماء مقطر1000مل.
تحضير البيئة:
1- تغلي المكونات يٌْ حمام مائي بعد خلطها (لإذابة الاجار).
2- ضبط الـ pH إلى5,5.
3- الترشيح والتعبئة والتعقيم هٌِ جهـاز الأوتوكلاف على121 مْوتحت ضغط 15 رطل/ بوصـة مربعـة
ولمدة 15 دقيقة.
2- بيئة المولاسا الصلبة:
مكونات البيئة:
عسل أسود20 جم، أجار20جم، مرق مغني960 مل.
طريقة التحضير :
1- 1- تغلي المكونات بعد خلطها پٌ خهمام مائي.
2-
3- الترشيح والتعبئة والتعقيم پٌ جهاز الأوتوكـلاف لمدة 20دقيقة ولمدة 3 أيام متتالية.
3-3 محلول لاكتوفينول Lactophenol solution
يتكون محلول اللاكتوفينول من: بلورات الفينول20 جم، حامض لاكتيك20 جم، جليسرين،

40 جم، مـاء مقطر40 مل. وتخلط المكونات وتحفظ ِپِ زجاجات بنية اللون.أطباق بتربة معقمة. طريقة الممل :
1- سيح أنابيب أجار المولت وصبها يِّ الأطباق.

2- بعدأن تجمد البيئة افتح بعض الأطباق وعرضها للهواء مـدة5-10 دقـائق. ثـم اقلب الأطبـاق واتركهـا على درجة حرارة المعمل لمدة أسببوع

3- خـذ خهـس إبـر مـن كـل مـن الجـبن والززبـد والشـراب والمربـى...الخ الـتي أمـامـك, ثمر لقـح بهـا الأطبـاق المحتوية على البيئة والمحضـرة كمـا ٌِ رقم(1) وذلك بطريقة التخطيط ثم اتركهـا على درجـة حـرارة المعمل لـلأسبوع القادم.

4- لاحظ نمو مـجاميع الفطريات بالأطباق ثم خذ بالإبرة المعقمة المبللة بهـحلول جليسرين جزءا مـن الفطر. يحتوي على ميسليوم وحامل الجـراثيم والجراثيم.

5- ضـ هـذا الجـزء يِن نقطـة مـن محلـول اللاكتوفينـول على شـريحـة زجاجيـة وغطـه بغطـاء الشـريحة ثم افخصها بالعدسـة الصنرى ثم الكبرى. ارسم مـا تراه وحاول تعيـين نوع الفطر ولاحظ الآتي:

أ- الميسليوم:
مقسـم أو غير مقسـم.
ب- الجراثيم غير التزاوحية:
كويندات أو سـيرانجيوسبورز حجمها, لونها, شكلها, إذا كانت خشنـة أو مسننة, تركيبها خليـة واحـدة أو
اثــين أو أكثر.
ج- أجسام ثمرية:
إذا كانت سبورانجيوم لاحظ الحجم, اللون والشـكل والموضع.
إذا كانـت تحهـل كوينـدات إذا هـا كانـت واحـدة أو أكثـر مـن كوينديـة علـى الحاهـل الكوينـدي بشكل وتركيب السترجماتا، ترتيب الكويندات ومميزاتها إذا مـا كانت الكويندات ملتصقة معها. د- مميزات أخرى: مثل الستولين الرايزود Foot cell أو إذا كانت مـكونة جراثيم كـلاميدية أو غيرها. هـ- ارسم عينات من الفطريات وذلك للتعرف على صفاتها(مستعينا بالأشكال4، 5، 6)الموجودة بالصفحة التالية)

شكل(4) الشكل المجهري لفطر Rhizopus nigrecans

شـكل(6)الشكل المجهري لمطر
التتلدريب العملي

أمـامك البيئات التي قمت بتحضيرهـا
1- بيئة أجار المولت.
2- بيئة المولاسـا الصلبـة.

والمطلوب اتباع الخطوات التي ذكرت سـابقا ثم دون النتائج يٌ الجدول التالي:

الأجسـام الثمـرية			الجراثيم غير التزاوجية				الميسليوم		نوع المادة المستخخدمة 20 التلقيح	\bigcirc
الموضح	الشكل	اللون	التركيب	الشكل	نا	اللون	غير مقسـم	مقسم		
									الجـن	1
									الزبد	2
									 طبيعي	3
									مربى	4
									خبز رطب	5

س2: لماذا يضبط الـ pH لبيئة الفطريات عند5,5 ؟

س3: ارسـم عينـات من الفطريات التي تحصلت عليها وتعرفت عليهـا تحـت الميكروســكوب وذلـك للتعـرف على صفاتها.؟

الأحيـاء الدقيقة في الأغلية

الخمائر وِيْ الأغذية

الوحدة الخـامسة الخمائر في الأغذية	126صنع الأجياء الدقيقة في الأغذية	التخصص تقنية التصنيع الغذائي
	بالفطريات.	رة :التعرف على

الأهداف:

1- أن يقـوم المتــدرب بــالتعرف علــى أشــكـال الخهـائر الــتي تحــصل عليهـا بعــد إجــراء الاختبــارات
الميكروبيولوجية.

2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيـة.

مستوى الأداء المطلوب:أن يصل الطالب إلى إتقان الجدارة بنسبة 98٪.

الوقتت المتوقّع للتلدربب على الجدارة: سـاعتان

الوسائل المساعلة:

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمـة لإجراء الاختتبارات المختلفة.
2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي.
3- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحية الدقيقة.

متطلبـاتالجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي

قام بتـميتها.
2- تحتاج الجدارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم وِّ الاختبار.

الخمائر في الأغذلية

الخهـائر فطريـات تتبع عـائلات عديـدة وهـي تتـكـاثر بـالتبر عـم أو بالانقسام الثـائي البـسيط أو بالتجرثم يٌ الأنواعاً التابعة للاسكوميسيتس Ascomycetes وأهمهـا مـا يتبع جنس Saccharomyces
 الجليسيرول وتوجد أنواع أخرى من الخميرة الكاذبة تسمى False yeast التي منها جنس Torulopsisوهي تحـدث تخهـرات غير مرغوب فيهـا ولكنهـا تستعمل صناعيا يٌ بعض الأغـراض الطبيـة كهما أن بعضها يستعمل كغذاء.

وعموماً تتمو الخميرة ٌِْ البيئات السائلة على الصورة الآتية:

1. تؤكـس الأحهـاض العضوية والـسكريات والكحولات.
2. خميرة سطحية Top yeasts تستعمل وٌ صناعة البيرة المسماة الـ Ale beer. 3. تميرة قاعية Bottom yeasts تستعمل ِِّ صناعة البيرة المسماة لاجر Lager beer.

الأدواتوالمواد اللازمة:
أ- بيئة خميرة تتحمل التركيزات العالية Osmophilic yeasts(بيون السكريات) 1- يحضر لتر من بيئة المرق المفذى ويضاف إليه السكر المراد اختبار تحلله (الجلوكـوز- اللاصتوزالسكروز) بواقع5 جم.

2- يضاف محلول دليل بروم ثيمول الأزرق1مل.
3- تـملا الأنابيب ويوضع بكل منها 7 مل مـع وضع أنبوبة در هـام.
 ب- بيئة مرق الجلوكوز المغنى
متل بيئة بيون السكريات مع إضافة سكر الجلوكـوز5 5 المه.

$$
\begin{aligned}
& \text { ج- بيئة لبن دوار الشمس: ذـكرت سـابقا. } \\
& \text { د- دليل بروموثيمول الأزرق: }
\end{aligned}
$$

يضاف الماء والترشيح.

هـ- بيئة أجار عصير البرتقال المائل: تتكون من:-
 برتقال200 مل، أجار5و 1٪ أجار أجار، ماء مقطر 800 مل يحضر عصير البرتقال بتسخين لتـر مـن العصير
 بالإضافة إلى ما سبق يجب أن تتوفر المواد الآتية:
1- مزرعة من خميرة (حقيقية) مثل الـ S . cerevisiae.
2- مزرعة من خميرة (كاذبة) مثل الـ Torula 3- بيئة مرق السكروز المغني بنسبة1, 20, 40, 65 سكروز.
4- عصير الكرنب (الـلاهانة).
5- مرق اللاكتوز المفذي.

6- بيئة جرودوصكوا Gorodkowa.

طريقة إجراء الاختبـار

قم بتحضير البيئات السابق ذكرها ثم استخدامها هٌِ إجراء التجارب التالية
1- أ خمائر تميش تحت ضغطا أسموزي مرتفع Osmophilic yeasts
أ) لقـح كـل مـن الأنابيـب المحتويـة علـى بيئـة مــرق السـكروز بنسبة1 \%, 20, 40, 65 بمزرعـة مـن الـ مثـل Zygosaccharomyces sp ومجمهوعـة مهاثلـة مـن البيئـة السـابقة بهزرعـة
S. cerevisiae خميرة الخباز
 بالتفير الظاهر ٌٌِ البيئة وكذذلك الغاز المتكون ٌٌِ التركيزات المختلفة.

Film yeasts الخميرةالفشائية
أ- لقح أنبوبة محتوية على عصير الكرنب Sauer kraut juice (5 مـل) بخميرة غشـائية وأخـرى بخميرة قدر الرقم الأيدروجيني للعصير قبل ا لتحضين بواسطة pH-meter أو بواسطة ورق الرقم

الأيدروجيني.
ب- حضن الأنبوبتين هِ درجة حرارة المعمل ولمدة7أيام لاحظ شكل النمو ورائحـة كـل مـن الأنبوبتين ثم قدر الرقم الأيدروجيني يٌㅇ العصير لكـل أنبوبة.

3- الخمائر المخمرة للسكر Sugar fermenting yeast

 الخميرة الكاذبة التي تخمر اللاكتوز (Torula) ثم لقح مجهوعة أخرى من البيئـات الأخرى بخميرة بيرة التي لا تخهر الـلاكتوز.

ب- حضن الأنابيـب على درجـة حـرارة المعمـل لمدة2-5 يوم ثم اختبره للآتـي:النمـو, تكـوين الغـاز, مقـدار التعكير والراسب ٌِِ بيئة المرق, تكوين الغاز والتغير وٌِ الرقم الأيدروجيني وِّ بيئة اللبن, رائحة الأنابيب.

4- الخميرة|الحقيقية: Ascospore Forming
Gorodkowa أو بيئة جور ودكوا Orange juice sugar slant أق بيئة أجار عصير البرتقال المائل
بنوع S. cerevisiae ونوع Zygosaccharomyces .

ب- حضن على درجة حرارة25 م ثمم اختبر كل أسبوع لمدة تتراوح من2-3 أسابيع للجراثيم الاسكية وللتزاوج ثم دون النتائج المتحصل عليها پٌ جدول.

التتلدربب المهلي

أمـامك البيئات التي قمت بتحضيرها وهى:-
1- مزرعة من خميرة (حقيقية) مثل الـ S . cerevisiae.
2- مزرعة من خميرة (كاذبة) مثل الـ Torula .
3- بيئة مرق السـكروز المغذي بنسبـة 1, 20، 40, 65\% سـكروز.
4- عصير الكرنب (الثلاهـانة).
5- مرق الـلاكتوز المفذي.
6- بيئة جرودوكوا Gorodkowa.
والمطلوب اتباع الخطوات التي ذكرت يٌٌ الدرس العملي، وتدوين النتائج ٌِْ الجدول التالي:

الخهـأُر الحقيقية	الخهـائر المـخمـرة للسـكريات	الخهـأُر الغشـائية	الخهـائر الأسموزية	وجاه المقارنة	م
				النمو	1
				التغير البيئة	2
				تكوين الغاز	3
				الرائحة	4
				رقم الـ	5
				مقدار التغير ِ2ْ البيئة	6
				مقدار التعكير	7

الأحيـاء الدقيقة في الأغلية

بكتريولوجيا المياه

1- أن يقوم المتدرب بالتعرف على شكل البكتريا الموجود يِّ الماء ووصفها وإجراء العد الكلي. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـحيـة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 95٪.
الوقتت المتوقيع للتـلـربب على الجدارة: سـاعتان.

الوسـائل المسـاعلدة:

1- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة.

2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا. 3- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـات الجلدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي

قام بتتميتها.
2- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌِْ الاختبار.

بكتيريـولوجيـا الميـياه

$$
\begin{array}{r}
\text { تقدر صلاحية المياه للشرب بأريع تحاليل هي: } \text { التحاليل الكيماوية: }
\end{array}
$$

تقدر فيها الجوامد الكليـة والعسر المائي Hardness كـذلك يختبر المـاء لأنواع مـن الكيماويـات المضرة للإنسان متل الرصاص السام وأمـلاح الزنكـ.

2- الاختبـاراتالفيزيـيائية:
ويختبر فيها عمـا إذا كان بالمياه عكارة واللون والطعم والرائحة
3- الاختباراتالبيولوجية:
ويفحص فيها عن وجود الطحالب والفطريات والبروتوزوا وديـدان النيمـاتودا, عذراء الحشرات التي
تتمو على المياه.
4- الاختبـاراتالبكتزيولوجية:
وهي مهمة پٌِ تحديد مدى صلاحية المياه للشرب ومدى إمكانية وجود الماء ملوثاً.
التقلير الكمي لبكتزيـا الميـاه:The quantitative examination of water
الطريقة المتبعة عادة للتقدير الكهي البكتريولوجي المتبع يٌ اختبار الميـاه لا يعطي سـوى جـزء هـن المـن العدد الكلي للبكتريا فيها إذ أن معظم الميكروربات الموجودة يو المـاء التي لا تتمو على البيئـات المعمليـة

 ولاختبار صلاحية عينة ماء لأغراض الشرب واستخدام المنزلي يو المصانع يجري عليها الآتي: 1- 1- عدد البكتريا الكلي يٌ عينة المياه. 2- اختبار تلوث العينة بمياه المجاري.

تؤخذ عينة المياه وِّ زجاجة معقمة ويجب أن تمتل العينة مصدر المياه المطلوب فحصـة بكتريولوجيـا مـع الاحتراس من تلوث العينة أثنـاء أخذهـا أو نقلها. وعند أخذ العينة مـن مـاء الحنفيـة يـلاحظ تعقيم فوهــة الحنفية باللهب ثم ترك الحنفية مفتوحة لمدة خمس دقائق قبل أخذ العينة. وتؤخـذ العينـة مـن الأنهـار والـترع

والبـحيرات من تحت سـطـح المـاء وذلـك بغهـر زجاجـة العينـة مقفولـة تحـت سـطـح المـاء ثـم فتتح غطائهـا تحـت سـطح المـاء. يجـب أن يجـرى اختبـار الميـاه مباشـرة وإذا طـال الوقت مـن أخـذ العينـة لإجـراء الاختيـار عـن 3 سـاعات فيجب أن تحفظ العينة يِّ ثلاجة أو ِپِ صندوق خاص معد لتبريد وحفظ العينـات.

عل البكتريـا الكلي في عينة الميـاه:

البيئـات المطلوبة

بيئة أجار التربتون والجلوكوز ومستخلص الخميرة 1- تتكون هذه البيئة من تربتون5 جم، هستخلص الخميرة 2,5 جم، جلوكوز1 جم، اجار20 جـم، مـاء مقطر1000مل.
2- تذاب المكونات يٌ الماء ثم تغلى يْ حمـام مـائي(حتى يذوب الأجار) ، ثم يعوض النقص بالتبخحير بإضافة
 رطل/بوصةr بمدة15دقيقة.

الأدوات والمواد اللازمهة:
زجاجة عينة معقمة.

- 6 أطباق بتري معقمة.

6 أنابيب اختبار تحوي كل منها على 9 مل مـاء معقم

- 3 مـاصـات1 مل معقمة.
- 6 أنابيب من بيئة أجار التربتون والجلوكوز ومستخلص الخميرة.

طريقة العمل :
1- رج عينة الميـاه جيداً25 مرة.

2- انقـل بواسـطة مـاصـة معقمـة مقـدار 1 هـل مـن المـاء إلى الأنبوبـة المحتويـة علـى9 9 هـل مـاء معقـم فيـصبـح
التخفيف 10/1
3- الخلط الأنبوبة10/10 جيداً باستعمهال ماصة هعقمة جديدة ثم انقل بواسطة هذه الماصة 1 مل من هذه
الأنبوبة إلى أنبوبة أخرى بها9 مل مـاء معقم فيكون التخفيف1 /100
4- اخلط بهاصـة معقمـة جديـدة محتويـات الأنبوبـة (تخفيـف1/100) ثـم انقـل بواسـطتها 1 مـل إلى طبـق
بتري, وكرر ذلك يٌِ طبق آخر.
5- بنفس الماصة كرر مـا سبق فِ الخطورة 4) من أنبوبة تخفيف1 1000

$$
\text { 6- } 7 \text { - بنفس الماصة على كر مـ سبق من عينـة الماء الأصلية. }
$$

 شروط التعقيم وأغلق الأطباق جيدا واتركها حتى تتصلب.
 على أن يكون الطبق المستخدم يٌٌ العد محتويا على مجاميع يتراوح عددها بين30-37 35. 10- خذ المتوسط الحسـابي لكل طبقين مـن تخفيف واحـد ثم اضـرب يٌ مقلوب التخفيف فينتج عـد البكتريا الموجود پٌ 1 مل من العينة.

اختبـارتلوث الهينة بميـاه المجاري:

يعتبر الماء صالحاً للشرب عادة إذا كان خالياً من ميكروبات القولون بشرط أن يكـون خاليـاً مـن
 حامض وغاز وهذه المجموعة توجد عادة يٌ أمعاء الإنسان والحيوان ذي الدم الحار وعلى ذلك فوجودهـا ـيو

 المجموعة يٌ المياه فإن ذلك يدل على تلوثها بمياه المجاري واحتمال وجود ميكروبات مرضية وتكـون الميـاه

غير صالحة للشرب.
واختبار المياه لهذه البكتريا يجرى يِّ العادة على 3 خطوات:
1- 1-الاختيارالاحتمالي Presumptive test
لاختبار وجود مجموعة القولون يجري ذلك الاختبار بتلقيح بيئة بويون اللاكتوز أو بيئة ماكونكى السـائلة بعينة المياه المطلوب فخصها فإذا تكون غاز حوالي10٪ أو أكثر مـن حجـم أنبوبـة
 أخرى فإن نتيجة الاختبـار يكـون مشكـوكا فيـه وعلى ذلك تجـرى الاختبـارات الأخرى. أمـا عدم ووجود
 اختبارات أخرى ولإجراء الاختبار الاحتمالي تتبع الخطوات الآتية:

1. عينة المياه.
2. أنابيب فيها بيئة ماكونكي السـائلة وتحتوي على أنابيب در هام.
3. ماصات1سمُ3 معقمة، ماصات10 سم 3 معقمة.

بيئة ماكونكي السائلة MacConkey, s bile salt broth
المكونات:
ملح الصفراء 5Bile salt جم، سكر لاكتوز10 جم، ببتون30 جم، ص كل5 جم، مـاء مقطر 1000 سم3.

التحضير:

1. تخلط المكـونات مع الماء ثم تستخن ٌِِ حمام مائي للذوبان. 2. ضبط الـ pH إلى 4و7 وترشـح وِ مـرشـح بوختر.
2. إضافة الدليل (بروموكريزول بريل1٪)
3. تعبأ الأنابيب بواقع10 مل يٌِ كـل أنبوبة مع وضح أنبوبة در هـام
4. تعقم پٌ جهاز الأوتوكالاف على 121 مُوْلمدة20 دقيقة ولمدة3 أيام متتالية

طريقة العمل:
1- لقح أنبوبة ماكـونكي بمقدار 1مل من عينة المياه.
2- حضن الأنابيب على درجة37م.

3- اختبر الأنابيب لوجود حامض وغاز بعد24 سـاعة فإذا لم يتكون غاز حضن لمدة24 سـاعة وأخرى ثم دون نتيجة وجود الغاز من عدمه بعد كل مدة 24 سـاعة و48 ساعة.
4- إذا لم يتكون غـاز بعـد48 سـاعة تعتبر النتيجـة سـلبية ولا تجـرى أي اختبـارات أخـرى أمـا إذا تكـون الغاز فتجرى الاختبارات التالية.

2- الاختيـار التحقيقي Confirmatory test
إذا كان الاختبار الاحتمالي سـابق الذكر مشكوكاً فيهه بمعنى ظهور أي كمية من غاز بعد 48 ساعة بعد التحضين فيجب إجراء الاختبار التحقيقي فيستعمل عادة إحدى بيئتين صلبتين يٌ الاختبارالتحقيقي وهمـا:

1- بيئة Eosine methylene blue يرمز لها EMB.
. Endo agar بيئة

 aerogenes
 أحمر غامق وقد يكون أولاً لها لمعان معدني أمـا مجاميع A. Aerogenes فـلا يظهر لها المركز النـامق وتكون معتمة وردية اللون.

الأدوات والمواد المستعملة:
1- أطباق بتري تحتوي على بيئة Endo agar \& EMB. 2- أنابيب ماكونكي التي أظهرت اختباراً موجباً أو مشكورياً فيأ 3- مزرعة E. coli عمرهـا24 سـاعة يٌ مرق مغذي. 4- مزرعة Aerobacter aerogenes عمرها 24 سـاعة يِّ مرق مغذي بيئة الايوسين مثلين بلو: Eosin methlene blue agar

تحضر هذه البيئة بإضافة كمية معلومة من اللالكتوز مـع صـبغتين الايوســين Eosine والمثيلـين بلـو
 العاملين الآتيـين:

1- تفاعل الايوسـين(وهي صبغة حامضية) مع المثيلين الأزرق(وهي صبغة قاعديـة) لتكـون صـبغة مركبـة ذات خواص حامضية أو متعادلة.
2- تكـوين كميـة مـن الأحمـاض نتيـجـة لتخهـر الـلاكتوز مـن شـأنها خفض الـرقم الهيـدروجـين مسببـا امتصـاص الصبغة المركبة على الخـلايا المكـونة للمجموعة ويلاحـ أن الميكروبـات الـتي لا تخهـر الـلاكتوز غالبـاً مـا تكـون شـــافـة (لا لـون لها) إذ أن الـصبغة المركبة لا تؤخذ على الخلايا يِّ وسط قلوي وإنما تظهر البيئة يِّ لون أحمر.

بيئة أجـار الايوسينز والمثيلين الأزرق Eosine methylene blue agar المكونـات:
ببتون10 جم، فوسفـات ثـائي البوتاسيوم2 جم، أجار20 جم، مـاء1000 مل.

التحضير:

1- اخلط المكونات ثم اغلي حتى الذوبان وِ حمـام مائي مع إضافة الماء لتعويض الفاقد بالتبخير. 2- تعبأ يِّ دوارق بواقع100 مل ثم تعقم على121 3- عنــد الاسـتعمال تـسيح البيئـة بالــدوارق يْ جهـاز الأوتـوككلاف ثـم يـضاف إليهـا كــل مـن: ســـكر

الـلاكتوز1 جم، محلول الايوسـين المائي2٪ مل، مححلول المثيلين الأزرق المائي5, 5٪ 3, 1, مل. 4- اخلط المكونات جيدا ثم ضع الدوارق پِ جهاز الأوتوكلاف لمدة5 دقائق، ثم بـرد إلى 50 مْ وصـب أطباق بتري المعقمة.

طريقة العمل

1- سيح بيئة EMB وبردهـا إلى درجة 45 مْ قسـم قاع الطبق إلى قســـين بواسطة قلم شمع. 2- لقح قسـماً بواسطة مزرعـة E. Coli والآخـر بواسـطة مزرعـة A. aerogenes وِّ طبـق آخـر لقـح بالخليط أي بالمزروعة التي أثبتت نتيجة موجبة وذلك بطريقة التخطيط. 3- بعد فترة التحضن اختبر المجاميع ودون النتائج. بيئة أجـار إنلدو Endo agar المكونات

ببتون 10 جم، فوسفات ثنائي البوتاسيوم5,3 جم، أجار20 جم، ماء مقطر1000 مل.
التحضبير
2-1

4- عقم یٌِ الاوتوكالاف على درجة حرارة121 مْ وتحت ضغط15 رطل/بوصة مربعة ولمدة 15 ق 5- عند الاستعهـال تسيح البيئة بالدوارق ٌِ جهاز أر نولد ثم يضـاف الآتي لكل دورق(100 مل)، لاكتوز
 6- رج الدورق ثم عقم پٌ أر نولد لمدة5 دقائق. 7- برد إلى50 م ثم ثم صب थِ أطباق بتري المعقمة.

Completed test الاختيـار التكميلي
يجرى هذا الاختبار عادة للتأكد أن مجاميع A. aerogenes, E. coli التي ظهرت على أطبـاق关 الاختبار السـابق تبع مجهوعة القولون ويشمل: 1- أن الميكروب المعزول من الاختبار الاحتمالي يستطيع أن يخمر اللاكتوز ثانية.

2- أن المجاميع النـامية على البيئتين السابقتين والتي تظهـر تحـت الميكروســــيـوب عنـد فـحصها بطريقـة جرام خلايا عصوية قصيرة سـالبة لصبغة جرام غير متجرثهة فإنها تتبع مجموعة القولون.

الأدواتوالمواد اللازمة

1- طبق يحتوي على بيئة E. M. B والتي ظهرت عليه مجاميع حقيقية, وغير حقيقية لمجموعة القولون.
-4

طريقة العمل
 ماكونكي وكذلك أنبوبة الأجار المائل.
 بطريقة جرام وافحص الميكروب (خالايا عصوية قصيرة، سالبة لجرام وغير متجرثمة). 4- بعد 48 ساعة اختبر أنابيب ماكونكي لوجود حامض وغاز.
5- يكون الاختبار التكميلي موجبا إذا كانت النتيجة إيجابية بالنسبة للخطوتين السابقتين(3، 4). التفرقة بين أفراد مجموعة القولون

$$
\begin{aligned}
& \text { مجهوعة القولون: تشمل } 3 \text { تحـت مجاميـع هي } \\
& \text { E. coli -1 }
\end{aligned}
$$

(intermediate) E. freundii -2

01أن كل الميكروبات السابقة وٌٌ المحتمل تلوثها بالبراز.
02إذا حدث تلوث فٌِ المياه من عدة مصـادر فمن المحتمل أن يوجد بها E. coli ولكن إذا كـان التلوث مـن E. coli مصدر واحد خلاف البراز فقد يوجد يٌ المياه الأنواع الأخرى بدون وجن وفيما يلي هذه الاختبارات:

اختبـارالإندول
تستطيع بعض الميكروبـات أن تحلـل الحـامض الأمـيني Tryptophane هـع إنتـاج مركبـة الأنــدول وتستعمل هذه الظاهرة پٌِ التعرف على بعض الميكروبات.

1- مزرعة E. coli عمرها 24 ساعة يٌْ المرق المغذى. 2- مزرعة A. aerogenes عمرها 24 سـاعة يٌْ المرق المغذى. 3- أنابيب تحتوي على مرق التريبتون، الذي يتكون من:تربتون5جم، مستخلص الخميرة2,5 جم،جلوكوز 1جم،أجار20جم، ماء مقطر1000مل.

كيفية تحضير البيئة

$$
\begin{aligned}
& \text { ب- يعوض النقص بالتبخير بإضافة الماء. } \\
& \text { ج- ضبط الـ pH إلى7، ثم رشح پٌ القطن. }
\end{aligned}
$$

> د- يعبأ ويعقم على121 م وتحت ضغط15 رطل/بوصة مربعة لمدة 15 دقيقة. 4- ورق حامض الاكسـاليك. 5- دليل ارليك بوم Ehrlich- Bohme وهو يتحكون من محلولين:

محلول (أ)
95 مـل كحـول95٪ 1Paradimethyl amino benzaldhyd جم، حـامض الايدروكلوريـد مركز20 مل، يذاب الألدهيد يٌ الكحول ثم يضاف الحامض مع التقليب المستمر. محلول (ب) محلول مائي مشبع من فوق كبريتات البوتاسيوم. يخلط المحلولان (أ، ب). طريقة العمل :

1- لقح3 أنابيب مرق التريبتون بميكروبE. Coli ومرة أخرى A. aerogenes.
2- الأن أنبوبة من الأنابيب الملقحـة بكل مـن A. aerogenes ,E. Coli وضـ لكل منها ورقـة حـامض الأكسـاليك التي تثبت يٌ الغطاء القطني. 3- ضح الأنابيب يٌ الحضـان على 37 37 مْمدة يومين. 4- بعد فترة التحضين اختبر الإندول.

طرق الكشف عن الإندول
1- طريقة حامض الاكسـاليك:

إذا تكون الإنـدول فإن ورق حامض الاكسـاليك يتلون بـاللون الوردي إذا أن الإنـدول مـادة طيـارة. فإذا تكونت بفعل الميكروب فإنـه يتحـد مـع بلـورات حـامض الاكسـاليك مـكوناً لوناً ورديـاً ويعتبر هــذا الاختبار خاص لالِاندول.

2-2-
خذ أنبوبة لكل من الأنابيب الملقحة بكل مـن الميكروبين E. Coli وAerogenes . Aer المحضنة
 أحمر وردي پِ حالة وجود الإندول.

قد يجـرى اختبار الإنـدول بوضـع بـضع نقـاط مـن مححلول.Ehrlich A. B علـى قطعـة قطـن مـاص ثـم وضـع قطعة القطن داخل الأنبوبة بحيث تعلو على سطح المزرعة بهقدار3- 4 سـم ثم توضـع الأنبوبـة وٌِ مـاء يغلي لمدة15 دقيقة فوجودالإندول بالمزرعة يكون لوناً أحمر وردياً على قطعة القطن إذ أنه يتطاير ويتفاعل مـع الدليل ويجب عنـد إجـراء الاختبـار اسـتعهـال بيئـة خاليـة هـن الكـريوهيـدرات وإلا فــلا يمـكن الاعتهـاد على النتائج.

3- اختبـارأحمر الميثيل
يعتبر اختبار أحمر الميثايل كدليل على كمية الحامض المتصونة بواسطة أفـراد مجموعـة الـ Coli فعند تخهـر كمية معلومة من الكربوهيـدرات فإن E. Coli تتـتج كميـة مـن الحـامض أكثر مـن وعلى ذلك يستعمل هذا الاختبار للتمييز بينهما فالأولى تتتج كمية من الحامض كافية لتفير لون دليل أحمر الميثايل إلى اللون الأحمر بينمـا الثانيـة تـتتج مـن الحـامض مـا يكفـي لـتفير لـون الــليل فيظل لوناه أصفر.

الأدوات والمواد المستعملة

1- مزرعة E.coli يٌٌ بيئة المرق المفذى وعمرهـا24 ساعة.
2- مزرعة A. aerogenes يٌ بيئة المرق المغذى وعمرهـ24 ساعة.
3- أنابيب بويون الجلوكوز(مرق الجلوكوز المفذى).
4- دليل احمر الميثيل.
كيفية تحضير البيئة: تم ذكرهـا سـابقا.
طريقة العمل
1- لقح أنبوبة من بيئة الجلوكوز بميكـروب E.coliالأنبوبة الأخـرى بميكـروب Aerogenes واتـرك
أنبوبة بدوت تلقيح.

2- ضع الأنابيب پٌ الحضـان على درجة حرارة 37ْ ملمدة 2- 5 يوم
3- أضف 5 نقاط من دليل أحهر الميثيل إلى كل أنبوبة ثم امزج جيدا.

وجود لون أحمر يدل على أن الاختبار موجب بينما اللون الأصفر يدل على أن الاختبار سـالب.
4- اختبـارالـ Voges-proskauer test
ينشـأ مـن عمليـة التحويـل الغـذائي لـبـض المركبـات تـكـوين مـواد الغـرض منهـا معادلـة الأحهـاض
النـاتجة حتى يتفادى الميكروب الوسط الحامضي مثل استيايل ميثايل كاربينول وتعتبر هذه العملية عمليـة
تعادل Neutralization mechanism ويمكن الكشف عن هذا المركب باختبارV.V. P.
ويستخدم هـنا الاختبـار للتمييـز بـين E.aerogenes,E. coli لأن الثانيـة تكـون اسـيتايل ميثيـل كــاربينول بينـهـا الأولى لا تكـونـه ويعتـبر هــنا الاختبـار عكـس الاختبـار الـسـابق والاســيتايل ميثايـل كاربينول بوجود الصودا الكاويـة والهواء الجـوي يتأكسـد إلى Diacetyl الـذي يعطي Alphanaphthol والحامض الأميني الأرجنـين الموجود بالببتون (الموجود بالبيئة) اللون الأحمـر.

الأدواتوالمواد المستعملة
1- مزرعة E. coli يِّ بيئة المرق المغذى وعمرهـا24 سـاعة
2- مزرعة A. aerogenes يْ بيئة المرق المفذى وعمـرهـا24 سـاعة.
3- أنابيب مرق الجلوكوز والفوسفات والببتون.
4- محلول الألفانفثول أو مسـحوق الكرياتين.
5- دحلول ص أ يد أو بوأ يد40٪.

كيفية تحضير البيئة

ببتون5 جم، بو 2يد فوأ4 5جم، جلوكوز5جم، مـاء مقطر1000 سـ33.

تخلط المكونات ثم تغلى يِّ حمـام مـائي. ترشـح بواسطة قمـع بوخنر وتعبأ ثم تعقم لمدة20 دقيقـة ولمـدة ثـلاث أيام متتالية.

محلول الألفانفثول: الفانفثول5 جم، كـحول95 ٪ ويكمل إلى100 سـ3.
طريقة العمل
A. aerogenes وأخرى من مزرعة E.coli لقح أنبوبة مرق الجلوكوز والفوسفات والببتون من مزرعة والأخرى بدون تلقيح للمقارنة.

$$
\text { 2- حضن الأنابيب على37 م ملمة } 48 \text { سـاعة. }
$$

3- بعد التحضين أضف1 سم3 من ص أ يد وبضع نقط من الألفانفثول أو مستحوق الكرياتين ثم امزج واترك الأنابيب2- 4 ساعة ثم اقرأ النتيجة.

النتيجة: يتكون لون أحمر على السطح يٌِ حالة مـا إذا كان الاختبار موجبا. 5- اختبـار تثثيل السترات

يستطيع Aerogenes Aوبعض (intermediate) أن يستخدم سـترات الصوديوم كمصدر وحيـد
للكربون يٌ بيئة مكـونة مـن أمـلاح معدنيـة ولكـن E. coli لا تستطيع. وعنـدما تكـون النتيجـة موجبـة فيدل ذلك على أن الميكروبات هي A. aerogenes وعدم مقدرة E. coli على النمـو وِن بيئة السترات ويستخدم هذا الاختبار للتفرقة بينها ويسهى هذا الاختبار باختبار كوزر.

الأدواتوالمواد المستعملة
1- مزرعة E. coli يٌ بيئة المرق المفذى وعمرها 24 ساعة. 2- مزرعة A. aerogenes يٌ بيئة المرق المغذى وعمرهـا24 ساعة. 3- أنابيب تحتوي على بيئة السترات.

كيفية تحضير البيئة:
فوسفات الأمونيوم والصوديوم5, 1 جم- فوسفات بوتاسيوم أحادى الأيدروجين1جم - كبريتات
 أنابيب اختبار وتعقم على 15 رطل لمدة15 دقيقة.

طريقة العمل

1- لقح أنبوبة مـن بيئة السترات مـن مزرعة E. coli وأخرى مـن مزرعة A. aerogenes والثالثة بـدون تلقيح للمقارنة.

2- حضن الأنابيب على37 ملمدة4أيام
3- بعد فترة التحضين نشاهد النمو من عدمه.

التلدريب العملي

أمامك عينة من الماء والمطلوب إجراء الاختبارات عليها للتأكد من نقاوتها وصـلاحيتها للاستهلاك الآدمي.

$$
\begin{aligned}
& \text { 1- قم بتحضير البيئات اللازمة للاختبار(ذكرت سـابقا).: } \\
& \text { 2- قم باتباع الخطوات المذكورة وٌ الدرس العملي. } \\
& \text { اولآ:اختبار تلوث العينة بمياه المجاري }
\end{aligned}
$$

الاختبار التكميلي	الاختبار التحقيقي	الاختبار الاحتمالي	حالة البيئة	\bigcirc
			تكون غاز	1
			لا يتكون غاز	2

3- قم بإجراء مقارنـة بـين A. aerogenes ، E.Coli، دون النتائج التي تحصلت عليها مـن الاختبـار بوضع علامة (=) إذا كان الاختبار سلبياً، عالامة (+) إذا كان الاختبار موجباً.

A. aerogenes	E.coli	اختبار	\bigcirc
		الأندول	1
		أحمر المثيل	2
		$\begin{array}{r} \text { اختبار فوكس- بروسكوير } \\ \text { (V.P() } \end{array}$	3
		السترات	4

	الوحدةالساسة بكتريولوجيا اليماه	126 الأجياء اللققية فيالغذية	تقنية التصنيع الغذائي		
أسئلة					
)		1-1 وجود بكتريا القولون دليل على وجود بكتريا مبرضة.			
		.			
((من ضمن الاختبارات الفيزيائية التي تجرى على المياه تقدير اللون والطعم والرائحة.				
.)	يجرى الاختبار التحقيقي پِ			
()				
.)				
س2:أكمل العبارات التالية					
الاختبارات البكتريولوجية تحدد - - - - - . -					
- - - . - . - - - تضم بكتريا القولون أنواع					
- - - -					
س3: وضح كيف يمكن التفرقة بين أنواع بكتريا القولون؟					

الأحيـاء الدقيقة في الأغلية

الإنزيمات البكتيرية

اسه الوحلدة:الإنزيمـات البكتيرية.

الجدارة:التعرف والكشف عن الإنزيمـات التي تتتجها البكتريا.

الأهل|ف:

1- أن يقوم المتدرب بالتعرف على نواتج التحلل الإنزيمي النـاتج عن فعل البكتريا ووصفها. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجـدارة بنسبة98٪.
الوقتت المتوقـع للتلـريب على الجلدارة:سـاعتان

الوسائل المساعلة:

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختتبارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي.

3- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحيـة الدقيقة.

متطلبـات الجلارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي

قام بتتميتها.
2- تحتاج الجـدارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم وْ الاختبار.

الإنزيمـات البكتيرية

تقرز البكتريا عند نموها يٌ بيئة إنزيمات خاصة تقوم بتحليـل محتوياتها لكي يسهل امتصاصها وتمثيلها ونتيجة لعملية التمثيل تتكون مواد ثانوية بالبيئة. ويوجد نوعان من الأنزيمات وهما :
1- إنزيمات خارجية ويفرزها الميكروب خارج الخلية.

2- وإنزيمات داخلية توجد داخل الخليـة وعنـد موتها وتحللها تخـرج هـذه الأنزيمـات إلى الخـارج تختلف البكتريا كثيرا يٌِ مقدرتها على إفراز الأنزيمات ويعتبر ذلك من أهم الوسائل للتعرف عليها.

تحليل النشـا

النشا مادة كـربوهيدراتية مكونة من تجمع الجلوكوز Polymer ومصدره النباتات وهو غير قابل
 بإفرازها إنزيمـاً خارجيـاً يعرف بـالاميليز (دياستيز) الـذي يحلل جـزيء النشا النـروي إلى مـالتوز ويستطيع المالتوز أن يدخل خلايا البكتريا حيث يتححلل بفعل أنزيم داخلي مالتيز Maltase. تقسم الميكروبات من حيث تحليلها للنشا إلى قسمهين قسم قادر على تحليـل النشا وآخـر غير قـادر وفلى هذا التحليل وتعتبر هذه الخاصية هامة وِّ التعرف على الميكروريات.

الأوراتوالمواد اللازمةة

> 01أنابيب أجار النشا العميق.
> 02أطباق بتري معقمة.
> 03مزرعة 03

> 05محلول اليود.
> طريقة العمل
 2- لقح أحد الأطباق بعمس إبرة التلقيح من مزرعة E. coli يٌ وسط الطبق. 3- كـرر ما سبق هٌِ (2) باستعمال ميكروب ألا

$$
\begin{aligned}
& \text { 4- حضن الأطباق لمدة48 ساعة على درجة37 مْ } \\
& \text { 5- بعد فترة التحضين اغمر كل طبق بمتحلول اليود. }
\end{aligned}
$$

يلاحظ تكون هالة عديمة اللون حول مجموعة الميكروب المحلل للنشا.وقد تظهر بلون أزرق أولا
تظهر هذه الهالة هٌِ حالة الميكروب غير المحلل للنشا.

تحليل الجييلاتين

 والجيلاتين إذا أذيب يٌ الماء فإنه يكون محلولاً غروياً صلباً وحيث إن الجيـلاتين مادة بروتينية فإن كثيراً من الميكروبات تحلله فيفقد بذلك قدرته على التصلب ويصبح سـائلا والأنزيم الذي يحلل الجيـلاتين يسهى الجيلاتينيز Gelatinase وهو أنزيم خارجي

تجدر الإثشارة إلى أن بيئة الجيلاتين المغذى لها خاصية التصلب Hydrogel على درجـة أقل مـن 25م ويتحول إلىHydrosol الحالة السائلة على درجة الحرارة أعلى من25 مْ ويجب أن لا تحتوي البيئة على مـادة كربوهيدراتية سهلة التبخر إذ أن الأنزيم المحلل للجيـلاتين لا يفرز يٌِ وجودها عادة. يعتبر اختبار تحليل الجيلاتين من الاختبارات الهامة يٌㅇ التعرف على الميكروبات وتعتبر الميكروبات المحللة للجيلاتين ميكروبات محللة للبروتينات Proteolytic وفيما يلي طريقة إجراء الاختبار :

1- B.

$$
\begin{aligned}
& \text { 2- } \\
& \text { 3- اترك الأنبوبة الخامسة بدون تلقيح للمقارنة } \\
& \text { 4- حضن الأنابيب على درجة 37م ملمدة } 48 \text { سـاعة }
\end{aligned}
$$

5- بعد فترة التحضين انقل الأنابيب إلى ثلاجة أو ضعها يٌ كِ كأس به ماء متلج لمدة نصف سـاعة ثم دون مـا

إذا تجـمد الجيـلاتين فإن ذلك يدل على قـدرة الميكروبات على تحللـه ولكـن إذا أسـيل الجـيـلاتين فـإن ذلـك يدل على تحلله.

ملحوظة

قــد يجـرى الاختبـار الـسـابق باسـتعمـال بيئـة الأجـار المفــني المحتـوي علـى 10٪ مـن بيئـة الجـيـلاتين
 المـراد اختيـارهـا لهـذه الخاصـيـة وبعـد فـترة التتحضـين تغهـر الأطبـاق بهـحلـول مـكـون مـن15جـر $15 \mathrm{HgCl}_{2}$ و 20جرام HCl مـركز, 100 مل مـاء.

فالميـروب المحلل للـجيـلاتين تظهر حوله هـالــة رائقـة بينهـا بـاقي البيئة تكـون ذات لـون معـتم، ولا تتكون هـه الهالة الرائقة حول الميكروبات غير المحللة للجيـلاتين.

التلريبب العملي

أمـامك البيئات التي تم تحضيرهـا لإجراء الاختبار للكشف عن مدى حدوث تحلل لكل من:

> 2-

دون نتائج الاختبـار ٌِِ جدول.

تحلل الجيـلاتين	تحلل النشـا	مظاهر التفير ٌِ البيئة
		تكون هالة حول الميكروب
		لون الهالة
		تجمد الجيـلاتين من عدمـه

أسئلة

س1 :أكمل العبارات التالية:-

الأحياء الدقيقة في الأغلية

إنزيمات التحلل المائي

اسم الوحلدة:تابع إنزيمـات التحلل المائي.
 الجلدارة:التعرف والكشف عن الإنزيمات التي تتتجها البكتريا.
 الأهداف:

1- أن يقوم المتدرب بالتعرف على نواتج التحلل الإنزيمي النـاتج عن فعل البكتريا ووصفها. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجـدارة بنسبة 98٪. الوقتت المتوقّع للتلـريبب على الجدارة؛ سـاعتان.

الوسـائل المســاعلـة

1- وجود مختبر لـلأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبـارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي.

3- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحيـة الدقيقة.

متطلبـاتا الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.
2- تحتاج الجـدارة التدريب مسبقا على كيفية استخدام الأجهزة التي تستخدم ٌِ الاختبار.

الكــازين عبـارة عـن فوسـفوبروتين وهــو الجـزءء البروتينـى الــرئيس وِ اللــبن، تـستطيع بعـض
الميكروبات أن تحلل الكازين إلى مشتقات قابلة للذوبان ويعرف ذلك باسـم الـ.Patronization
والأنزيم الذي يحلل الكازين يسهى كـازياز Casease وهو أنزيم خارجي ويمكن إثبات وجود هذا الأنزيم بتلقيح الميكروب بطريقة التتخطيط على سطـح بيئة أجار اللبن فإذا تكونـت هـالـة رائقـة حـول النــو البـكتيري فـإن ذلـك يـدل علـى إفـراز الأنـزيم. تـستطيع بعض الميـكروبـات إفـراز أــزيم الكازيـاز والـبع الآخر لا يستطيع ذلك ويعتبر هذا الاختبار هام ٌِِ التعرف على الميكروبات

الأدواتوالمواد اللازمهة

1- لـبن فرز معقم
2- أنابيب أجار مغذي عميق
3- أطباق بتري معقمة
4- E. coli مزرعة
5. 5. subtitles مزرعة

6treptococcus lactis مزرعة

طريقة العمل

1- سيح ثلات أنابيب أجار عميق ثم بردهـا إلى درجة505ْ م.
 وحرك الطبق لكي ينتشر اللبن يِّ الأجار وبانتظام ثم اترك البيئة لتجهد. 3- لقح بالتخطيط كل طبق بأحد الميكروبات الثلاثة. 4- اقلب الأطباق وحضن على درجة37 مْ لمدة3- 4 أيام. 5- اختبر الأطباق لوجود هـالة رائقـة حـول المجـاميع ثم اغمـر الأطبـاق بهـحلـول10 HC1 10 فـإذا ظلت الهالـة الرائقة موجودة فإن ذلك يدل على أن الميكروب يحلـل الكـازين. أمـا إذا كانت الهالـة الرائقـة موجـودة ثـم

للكازين

6- لاحظ أيضاً رائحة الأطباق خصوصاً التي بها تحلل للكازين حيث تظهر رائحة غير مرغوبة تّحليل الدهوز

لبعض الميكروبات القدرة على تحليل الدهون وينتج عن ذلك تزنخها أو فسـادهـا. وينتج عـن التحليـل الجليسـريدات ذات الـوزن الجزئـي المنـخفض جليسـرين وأحمـاض دهنيــة طيـارة أهـا الجليـسريدات العاليـة فتتحلل إلى جليسـرول وأحمـاض دهنية.

الأدواتوالمواد اللاززهة

1- أطباق بتري معقمة.
2-
3- أنابيب أجار مغذي عميق.
-
5- مزرعة Pseudomonas flourescens.
6. 6
. 7
8- Pencillium مزرعة
9 -زيت بذرة القطن المعقم أو زبدة معقمة
طريقة العمل
1- 1- سيح أنابيب الأجار العميق ثم برد إلى50مْ
 يتكون مستتحلب ثم صب الأجار ֵِِ طبق بتري معقم واتركه حتى يتجمد. 3- قسـم قاع الطبق إلى أربعـة أقسـام باسـتعمـال قلـم شمـع ثـم لقـح كـل قسـم بأحـد الميكروبـات الموجـودة أمـامك

4- حضن الطبق على درجة37 مْ ملمد3- 4 أيام. 5- بعد فترة التحضـين أغمر الطبق بهـحلول كبريتات النحاس. لاحظ مـا تشـاهده.

يشاهد لون أخضر مزرق حول وتحت المجاميع المحللة للدهون وذلك نتيـجة لاتحاد الأحماض الدهنيـة
النـاتجة عن تحلل الدهـن مع كبريتات النـحاس

التلريبب العملي

أمـامك البيئات التي تم تحضيرهـا لإجراء الاختبـار للكشف عن مدى حدوث تحلل لكل من:
2- 1- تحلل الكازين.

دون نتائج الاختبار ٌِِ جدول.

تحلل الدهون	تحلل الكازين	مظاهر التفير فِ البيئة	$\stackrel{\rightharpoonup}{r}$
		تكون هالة حول الميكروب	1
		لون الهالة	2
		تكون رائحة	3

أسئلة

> س1 : أكمل العبارات التالية:
> 1- الكازين عبارة عن-
> - - - - - - - الإنزيم المحلل للكازين هو
> 3- يتعرف على وجود إفراز لـالإنزيم بتكون- - -
> 4- ينتج عن تحلل الدهون-
> 5- يتعرف على تحلل الدهون بتكون لون- - - - - - حول المجاميع المحللة للدهون.
> س2: مـا هو تفسيرك للنتائج التي تحصلت عليها ِيْ الجدول؟

الأحيـاء الدقيقة في الأغذية

الاختبـار البـكتريولوجي للفواكة

اسه الوحلدة:الاختبار البكتريولوجي للفواكء المجففة.
الجلارة:التعرف والكشف عن الميكروبات التي توجد ٌٌِ الفواكه المجففة.
الأهداف:

1- أن يقوم المتدرب بالتـرف على نواتج التتحلل الإنزيمي النـاتج عن فعل البكتريا ووصفها. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 98٪. الوقتت المتوقِ للتلدربب على الجلدارة: سـاعتان.

الوسائل المسـاعلدة:

1- وجود دختبر لـلأحياء الدقيقة مجهز بجميع الأدوات اللازمـة لإجراء الاختبارات المختلفة.
2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا.
3- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـات الجلدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها. 2- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ِِْ الاختبار.

الاختبـار البكتويولوجي للفواكه المجففة

تحتوي الفاكهة المجففة يٌ العادة على أعداد مختلفة مـن الفطريـات والخهـائر والبكتريـا ولكنهـا غير نشطة نظراً لارتفاع نسبة السكر ٌٌِ هذه الفواكه، ولعدم وجود الرطوبة الكافية.

$$
\begin{aligned}
& \text { 1- فواكه مجففة (تين- بلح- مشمش- زيبب). } \\
& \text { 2- سكين وملقط معقم. } \\
& \text { 3- أطباق بتري معقمة. } \\
& \text { 4- ماصات معقمة. }
\end{aligned}
$$

5- بيئة أجار الجلوكوز ومستخلص الخميرة.
6- بيئة مرق اللاكتوز المحتوية على دليل بروموكريزول بريل بريل
7- بيئة مرق الجلوكوز ولمستختخلص الخميرة.
8- بيئة أجار المولت.
طريقة العمل
أ- تقدر عدد البكتريا بطريقة الأطباق:
 معقم, اتركها لمدة 10 - 15 دقيقة ثم رج بشدة.

 الجلوكوز ومستتخلص الخميرة. 5- حضن الأطباق على درجة حـرارة المعمـل لمدة 5 أيـام ثم عـد البكتريـا شـاهد أنواع البكتريـا الموجودة على الأطباق مع فخصها ميكروسكوبيا. بعد صبغها بصبغة جرام.

ب- اختباروجود الخمائر Detection of yeasts
 المحمضة بحامض اللاكتيك إلى رقم 4pH ثم حضن الأنبوبة على درجة حـرارة المعمـل لمدة5 أيـام ثم اختبر ميكروسكوبيا للخميرة أو للبكتريا الموجودة

ج- اختبـاروجود الميكروبـات التي تخمر الالاكتوز:

ضـع قطعة من الفاكهة المجففـة يِ أنبوبـة محتويـة علىى بيئة مـرق الـلاكتوز ودليـل بروهـوكريزول بريل والتي بها أنبوبة در هـام حضن على درجة 37م ملمدة2 27 موم ثم اختبر لوجود غاز يِ أنبوبة درهـام وتكـوين حامض بالبيئة افحص ميكروسـكوبيا.

Detection of molds د- اختبـاروجود الفطريـات
 أجـار المولـت رقـم pH لها 3.5 حضن على درجـة حـرارة الحـجـرة لمـدة 5 أيـام قـدر عـدد الفطريـات وكــلك لاحظ الأنواع الموجودة

التدريبالعملي

أمامك عينات من الفواكة المجففة (زبيب- بلح- مشمش). والمطلوب فحص هذه العينات وإجراء كل مـن الاختبارات التالية:

1- تقدير العدد الكلي للبكتريا بطريقة العد بالأطباق. 2- اختبار وجود الخمائر.

3- اختبار وجود الميكروبات المخمرة لسكر اللاكتوز. 4- اختبار وجود الفطريات. 5- دون نتائج الاختبار هِْ جدول.

اختبار وجود الفطريات	اختبـار وجـود الميكروبـات المخمـرة للاكتوز	الختبار وجود الخمائر	نوع التغير البيئة	\bigcirc
			تكون غاز	1
			الفحص الميكروسكوبي	2
			الصبغ بجرام	3

س1 1 : مـا هي أنواع الأحياء الدقيقة التي تتوقعها أن تتواجد على الفاكهة المجففة؟(تين- مشمش).

\qquad
\qquad
\qquad
_ _ - _ _ _ - _ _ _ _ _ - _ - _ - _ - _ - _ - - -
\qquad

س2: ملماذا يكون العفن أكثر سببـا يِّ تلف الفاكهة ؟

س3: نتيجة الفحص الذي قمت به- اذكر أنواع الأحياء الدقيقة التي وجدتها على الفاكهـة المجففـة؟ هـع رسـم هذه الأحياء الدقيقة ؟

الأحيـاء الدقيقة في الأغذية

الاختبار البكتريولوجي للدقيق

الجلارة:التعرف والكشف عن الميكروبات التي توجد ٌِِ الدقيق. الأهداف:

1- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد يٌِ الدقيق ووصفها. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستخخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة98٪. الوقت المتوقـع للتدريب على الجلـارة: سـاعتان

الوسائل المساعلةة:
1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة.
2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان الكهربائي- جهاز العد الكلي للبكتريا.
3- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـات الجـلارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.
2- تحتاج الجـد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌٌِ الاختبار.

اختبـار الدقيق بكتزيولوجيـا

عدد الميكروبـات بـالدقيق

يحتـوي الــدقيق علـى أنــواع عديـــدة مــن الميكروربـات كالفطريــات والخهـــائر والبكتريــا
والاكتينوميسس وتتوقف كـميتهـا على عوامـل عديـدة منهـا درجـة الرطوبـة ونظافـة البـذور المطحونـة مـن
الأمراض النباتية الفطرية والبكترية وتلوث الدقيق بالأتربة.
وعادة توجد البكتريا المتجرثمة بأعداد وفيرة نسبياً وذلكـ پٌ طور الجـراثيم لعـدم مـلاءمـة الـدقيق لنمو الأطوار الخضرية إذا مـا كانت نسبة الرطوبة به قليلة.

الأوواتوالمواد اللازمةة

1- أطباق بتري معقمة.
2- ماصات معقمة.
3- أنابيب اختبار بها 9سمـ3 مـاء معقمة.
4- بيئة الأجار المغذي.
طريقة العمل
1- أوزن مقدار10جم من الدقيق الجاف بدقة ثم انقلها إلى زجاجة تحتوي90سم³ مـاء معقم.
2- رج جيداً ثم أجر التخفيفات إلى1/10000.

إلى درجة45 مْ

4- حضن الأطباق على درجة30 3 مْمدة يومين
5- عد الميكروبات النامية على الأطباق ثم قدر العدد الكلي وِّ الجرام الواحد وزن جافـ.
6- قسمم الميكروبـات الناميـة إلى بكتريـا وخمـيرة وفطريـات ثم قسـم البكتريـا إلى مجــاميع بكتريـا متجرثمة - ملونة..الخ.

تقلير عدد الجراثيم البكتيرية

يمكن تقدير عدد البكتريا المتجرثمة وذلك بتسخين التخفيفات السابقة على درجـة80 مْ مـدة15

أمامك ثم انسبها إلى العدد الكلي للبكتريا.

شكل(6) الشكل المجهري البكتريا(-) سـالبة لجرام،(+) موجبة لجرام

التلدريب العملي

أمـامك البيئة التي قمـت بتحضيرهـا وهـى بيئـة الأجـار المفـني. والمطلـوب إجـراء الاختبـار مـع اتبـاع الخطوات كمـا ذكرت يِّ الدرس العملي

عدد الجراثيم البكتيرية	العدد الكلي للميكروبات	نوع العينة	$\stackrel{ }{ }$
		دقيق	1
		القشور	2

أسئلة

س1 : مـا هي أنواع الأحياء الدقيقة التي تعيش على الحبوب ؟

س2:مـا هو تأثير عملية الطحن على عدد الأحياء الدقيقة ِِْ الطحـين؟
 الأبيض النقي؟

س5: صف الأحياء الدقيقة التي حصلت عليها نتيجة الاختبار العملي الذي قمت بـ؟؟

الأحيـاء الدقيقة في الأغذية

الاختبـار البكتريولوجي للمشـروبات المعبـأة

الجدارة:التعرف والكشف عن الميكروبات التي توجد يٌ المشثروبات المعبأة.

الأهل|ف:
1- أن يقوم المتدرب بالتتعرف على الميكروبات التي تتواجد يِّ المشروبات المعبـأة ووصفها.
2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 98٪. الوقتت المتوقـع للتلدربب على الجلدارة: سـاعتان

الوسائل المساعلةة:

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات اللازمـة لإجراء الاختبارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان- جهاز العد الكلي.للبكتريا. 3- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـات الجدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.

2- تحتاج الجدارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌِْ الاختبار.

الاختبــار البكتزيولوجي للمشروبـات الممبـأة

يجب أن تكون المشروبات المعبأة نظيفة بكتريولوجياً ويطبق عادة على هذه المشروبات المواصفـات
البكيريولوجية الخاصة بمياه الشرب.
الأدوات اللازمة

1. مشـروبات معبأة يِّ زجاجات ومكـوناتها الغذائية
2. أطباق بتري معقمة.
3. بيئة أجار المولت.
4. بيئة مـاكونكـي السائلة.
5. بيئة الأجار المفذي.
6. زجاجات معدة للتعبئة.
7. ماصـات معقمـة.
8. سـدادات لهذه الزجاجات
(أ) اختبـار المشروبـات الجـاهزة للاستههلاك
1- الحصول على المينة
افتح زجاجة تحت شـروط تعقيم و عقم فوهـة الزجاجة بتعريضها للهب، ثـم اسـحب عينـة باسـتعمـال مـاصة10سـم3 معقمة, (العينات المحتويـة على غـاز ثاني أكسيد الكربـون يجـب أن تفـتح قبـل أخـذ العيــة بسـاعة أو ســاعتـين وذلـك للتتخلص مـن الغـاز. ويجـب التأكــد مـن أن الكميـة المـأخوذة مـن العينـة للتحليـل كلها سـائل وليس بها غاز)

2- العل بطريقة الأطبـاق
خـن 1سـمُ 3 مـن العينـة وقـدر عـدد البكتريـا باسـتعمال الأجـار المـــني وعـدد الفطريـات والخهـائر باستعمـال أجار المولت حضن على درجة 30 مْ ملدة3 يوم ثم احسـب العدد يِخ1سـم³

3- فحص العينة لميكروبـات القولون
 مكررات، حضن على درجة370 لمدة3 أيام واختبر وجود الغاز.

ملحوظة

يطبق عادة على هذه المشروبات المواصفات البكتريولوجية الخاصة بمياه الشـرب

(ب) فُحص المكونـات الفذّائية المصنوع منهـا المشروبـات
 1- تحضير العينة

 بتري معقم وصب عليـه البيئة(سيـيأتي ذكرهـا يون2 (2)

 فخصها

2- العل بطريقة الأطبـاق
تـستعمل بيئـة الأجـار المغـذي لتقـدير العـدد الكلـي وبيئــة أجـار المولـت لتقــير عــدد الفطريـات
 اللون.

ج- الاختبـارات البكتريولوجيلة للزجـاجـات المعلدة للتهبئة

1- أضف10سـمُ مـن بيئـة أجـار المولت إلى إحـدى الزجاجـات ثـم لـف الزجاجـة حـول نفسهـا حتـى تلامـس
البيئة جميع سطححها ثم اتركها على أحد جوانبها وحضنها
 أسطح الزجاجة
3- قدر عدد الميكروبات فيـه بطريقة الأطباق مستعهـلاً بيئة أجار المولت يمكن تقدير عدد ميكروبات القولون باستعمال بيئة مـاكونكي السـائلة المحتوية على أنابيب درهام اختبار غطاء الزجاجات بكتريولوجياً
خـذ غطـاء تحـت شـروط تعقيم ثـم عـرض السطح الخـارجي لـه للـهب ثم ضـعه وِ طـبـق بـتري معقـم بحيث السطح الداخلي يكون الخارج، صب أجار المولت، قدر عدد البكتريا والخمـائر والفطريـات بكـل غطاء.

التلـربِب العملي

أمـامك البيئات التي قمت بتحضيرهـا والمطلوب إجراء الاختبار مع اتباع الخطوات التي ذكرت لك.

أسئلة

> س1:أكمـل العبارات التالية:

1- العينـات المحتويـة علـى غـاز Co أجل-
 . - - - - - - - - - - -
 س2: اذكر الاختبارات التي تجرى للتأكد من نقاوة الميـاه ؟

 (2)
\qquad

\qquad
\qquad

الأحيـاء الدقيقة في الأغذية

الفحص البكتريولوجي للأغذية المعلبة غير الفاسدة
الجلدارة:التعرف والكشف عن الميكروبات التي توجد يٌِ الأغذية المعلبة.

الأهداف:

1- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد يٌ الأغذية المعلبة على أن تكـون غير فاسـدة الوقّت المتوقِّع للتلدريب على الجلارة: سـاعتان

1- وجود مختبر للأحياء الدقيقة مجهز بجميع الأدوات الـلازمة لإجراء الاختبـارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان- جهاز العد الكلي. 3- استتخدام اللوحات التوضيحية المبينة لأشـكال الكائنات الحية الدقيقة.

متطلبـاتالجلارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجرية بدقة والتعرف على أنواع الأحياء الدقيقة التي قام بتتميتها.
2- تحتاج الجدارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم ٌِْ الاختبار.

الفحص البكتزيولوجي للأغذيةية المعلبة غير الفاسلدة

تختبر الأغذية المملبة بكتريولوجيا من حيث تمـام جودة التعقيم والقدرة على الحفظ ويجري معرفة جودة التعقيم بأخذ عينة منها مباشرة وفخصها بكتريولوجيا أما قدرتها على الحفظ فيـجري هذا الاختبار بتحضـين العلب وهـي مقفلة فترة من الزمن.

1- أغذية معلبـة (خضر وفاكهة)
2- بيئة أجار الجلوكوز والتربتون المحتوية على دليل بروموكريزول بريل.
3- بيئة أجار البيتون والحديد.
4- بيئة مرق الكبـد.
5- بيئة أجار المولت.
6- أطبـاق بترية معقمة.
طريقة العمل
1- اختبار الخضروات المعلبة من حيث تمـام جودة التعقيم
تحضير العينة
أ- تفتح العلبة تحت شـروط التعقيم، وذلك بتعقيم مكان الفتحة باللهب أو بأي وسيلة أخرى وتستخدم
فتاحة بعد تعقيمها يٌِ اللهب وتفتح بها العلبة ِيْ هذا المككان المعقم.
ب- انقل15جم أو15سـم³ من الغذاء، تستعمل ماصة معقمة ذات نهاية متسـعة لنقل السوائل، كمـا

ثاقب فلين أو ملعقة spatula معقمـة لنقل الأغذية الصلبة أو النصف صلبة يستعمل كذلك قضيب زجاجي معقم للمعاونة يٌ إدخال العينة إلى أنبوبة اختبار معقمة. إجراء الاختبار:
أ) تخلط المادة الغذائية هع مثل حجهها من الماء المعقم جيداً قبل التلقيح وترج جيداً ويوزع15 سـمُ أو 15 جرام منها على3 أنابيب من البيئات استعمل واحدة أو أكثر من البيئات الآتية

1- بيئةأجارأومرق الجلوكوز والتربتون المحتوي على دليل بروموكريزول بريل (لاختبار وجود الميكروبات المحدثة للفسـاد الحمضي المستتر).

2- بيئة مرق الكبد (لاختبار وجود الميكروبات المحللة للبروتينات) والمحـدثة لحالات الانتفاخ بالعلب 3- بيئة أجار البيتون والحديد(لاختبار الميكروبات المسببـة للفسـاد الكبريتي).

ب) حمض مجموعة من3 أنابيب على درجة37مْ وأخرى على55 مْ لمدة48- 72 سـاعة ثم اختبر للنمو ثم افخص ميكروسـكوبيا بعمل غشـاء وصبغة بطريقة جرام. 2- اختبار الفواكه المعلبة وغيرهـا من الأغذية الحـامضية لكونها معقمة يجرى هذا الاختبار بغرض معرفة مدى تعقيم أو وجود البكتريا التي قد تسبب فسـاد الغذاء الحامضي. تحضير الاختبار السـابق:

إجراء الاختبـار
 درجة30 ْم ملمد72 سـاعة, ثم اجرِ العد لمجاميع الميكروبات المحبة للحموضة الناميـة ودون النتائج التي

$$
\begin{aligned}
& \text { تحصل عليها. } \\
& \text { ب- وزع15سـُ3 , أو15 جم وٌ } 6 \text { أنابيب من كل من البيئات التالية:- } \\
& 1 \text { - مـرق الجلوكوز والتربتون المحتوي على دليل بروموكريزول بريل. } \\
& \text { 2- مرق الكبد. } \\
& \text { ملحوظة: }
\end{aligned}
$$

من الأجار المعقم فوق سطح البيئة السـائلة، ثم حضن ثلاثة أنابيب من كل بيئة على درجة37مْ
لمدة48-72 سـاعة و3أنابيب أخرى على درجة 55 مْم ملمد48 سـاعة ابحث عن الميكروبات الـلاهوائية
المحللة للبروتينات.
ملحوظة:
إذا كانت المادة تحتوي على جزء سـائل وجزء آخر صلب يؤخذ عينة من السـائل كمـا سـبق ومن الصلب باستعهمال ملقط معقم ثم يجرى مـا سبق يْ عمل شـرحة يٌّ(1 ، 2 2).

اختبـار قوة الحفظ
1- الاختبار الميكروسـكوبي:لعلب على درجة37مْ لمدة30 يوم للميـكروبات الميزوفيلية وأخرى على 55 ْم لمدة10أيام للميكروبات الثروموفيلية ثم اختبر كالآتي:
أ- الاختبـار الظاهري: لعـلامات الفسـاد على العلب (الانتفاخ) قدر الرقم الأيدروجيني بعد فتحها. ب- الاختبار الميكروسـكوبي بتحضير غشاء من العلبة وفحصه ميكروسـكوبيا بعد صبغه بطريقة جرام مثلاً
2- الأطعمة الحامضية الأكثر :حضن العلب على درجة30ْم أو على درجة حرارة المعمل لمدة14 يوم إلا إذا كانت العلب قد مكثت مثل هذه المدة بالمعمل بعد تصنيعها, اختبر ظاهرياً كـما سبق يٌ (1 (1)

3- للحصول على معلومات أكثر: فيما يختص بالميكروبات الموجودة يمكن تتبع (2) وخطواتها

التلـريب العملي

أمامك البيئات التي حضرتها، والمطلوب إجراء الاختبار هـع اتباع الخطوات التي ذكرت لك.

الأغذية الحامضية	الفواكة المعلبة	الخضروات المعلبة	العد الكلي للميكروبات	Γ
			البكتريا	1
			الفطريات	2
			الخمائر	3

أسئلة

1- للكشف عن مدى جودة عمليـة التعقيم لـلأغذية المعلبة تؤخذ عينـات مخزنة. () ل.
2- للتعرف على كفاءة عملية الحفظ تؤخذ عينات طازجة.
3- تستخدم بيئة أجارالجلوكوز والتربتون للتعرف على التححلل للبروتينات.
4- الأطعمة الحـامضية المعلبة تحضن لمدة24 سـاعة.
س2. كيف يمـكن التأكد من قوة حفظ كل من

1) الخضروات المعلبة -

- - - - - - - - - - - - -

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

الأحيـاء الدقيقة في الأغلية

دراسـة مقاومة الجراثيم للحـرارة (الخميرة- البكتريا- الفطر)

$$
\begin{aligned}
& \text { دراسة مقاومة الجراثيم للحرارة (البكتيـا- الفطر) } \\
& \text { البـرا }
\end{aligned}
$$

13

الوحلدة الثـالثة عشر
 126صنع
 اسه الوحلدة:دراسـة مقاومة الجراثيم للحرارة (الخميرة- البكتريا- الفطر) . الجلارة:التعرف والكشف عن جراثيم الميكروبات التي تقاوم الحرارة.

الأهداف:

1- أن يقوم المتدرب بالتعرف على جراثيم الميكروبات التي تتواجد ٌِِ الأغذية وتقاوم الحرارة. 2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها

3- أن يقوم المتدرب باستتخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 95٪. الوقتت المتوقتع للتلدريب على الجلدارة:سـاعتان

الوسائل المسـاعلة:

1- وجود مختبر لـلأحيـاء الدقيقة مـجهز بجميع الأدوات الـلازمة لإجراء الاختبارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضـان- جهاز العد الكلىي.

3- استخخدام اللوحات التوضيحية المبينة لأشكال الكائنات الحية الدقيقة.

متطلبـاتالجلدارة:

1- أن يكون المتدرب قادرا على تطبيق خطوات التجربـة بدقـة والتــرف على أنـواع الأحيـاء الدقيقـة الـتي

قام بتتميتها.
2- تحتاج الجـدارة التـدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم وِ الاختبار.

الوحلدة الثالثة عشر
 دراسة مقاومة جراثيم الخميرةوالفطريــات والبكتزيـا للحرارة

من المعروف أن جراثيم البكتريا أشد مقاومة للحرارة من جـراثيم الخمـائر والفطريـات ويرجـع ذلكـ لأن تركيبها عبارة عن بروتين متماسك به نسبة بسيطة من الماء

الأوواتوالمواد اللازمهة

1- جراثيم من الفطريات.
2- ج- جراثيم خميرة.
B. subtilis ج

4- بيئة بويون الجلوكوز ومستخلص الخميرة
5- بيئة مرق مغذي.
طريقة العمل
احتياطات خاصة يجب اتخاذها :-
1- يجب عدم لمس جوانب الأنبوبة بالإبرة أثنـاء التلقيح فإذا لمست يجب تعقيهها بتعريضها للهب قبل ابتداء
تجربة المقاومة للحرارة
2- ام امزج جيداً الميكروب الملقح بالبيئة
3- إذا ستخنت الأنابيب وِّ حمام مائي يجب أن يكون الماء يٌ مستوى أعلى من مستوى سطح البيئة 4- نفذ التعليمات بدقة للمدة ودرجة الحرارة المستعملة.
5- بعد فترة التعريض للحرارة برد بسرعة وِّ مـاء متلج
1- مقاومة جراثيم| الخميرة للحرارة.
أ- لتح7أنابيب من بيئة مرق الجلوكور ومستخلص الخميرة بمقدار 0و0سم³ من معلق خميرة متجرثهة. ب- سخن66أنابيب من هذه الأنابيب پٌ حهام مائي على درجة600 موارفع الأنبوبة الأولى بعد دقيقة والثانيـة بعد 6 دقائق وهكذا بعد8, 10, 12, 15 دقيقة اترك الأنبوبة السـابقة بدون تسخين للمقارنة ج- برد الأنابيب بعد رفعها مباشرة وبسرعة وحضن كل الأنابيب (السـابعة أيضاً وهـي المستعملة للمقارنة) على درجة حرارة الحجرة لمدة2- 5 يوم.
د- اختبر مقدار النمو بالتعكير, الرواسبب, الغاز المتصاعد، ، قارن النمو مـع الأنبوبة غير المعاملة ثم أوضـح ذلك باستعمـال علامة(+).

أ) الحرارة الرطبة:
1- لقـح أنابيـب مـن بيئـة هـرق الجلوكـوز ومـستخلص الخـمـيرة بمقـدار 0.10ـــمُ مـن معلـق جـراثيم الفطـر Penicillium or Aspergillus 2- أجر مـا سبق ذكره وِ الخميرة ب)الحرارة الجافة:

1- سـخن4أنابيب تحتوي على جراثيم الفطر الجـافة يِ حمـام مـائي على درجة600 م ثم ارفع أنبوبـة بعـد 10
والثانية بعد20 وهكذا بعد30 و60 دقيقة.

2- أضف تحـت شـروط التعقـيم إلى الأنابيـب السـابقة بعــ تعقـيم فوهـة كـل أنبوبـة بيئـة مـرق الجلوكـوز ومستتخلص الخميرة باستعمـال مـاصة معقمة إلى نصف الأنبوبـة، وباسـتعمـال أبرة تلقيح معقمـة حـرك البيئـة وما بها من جراثيم بغرض توزيعها 3- حضن على درجة حرارة الفرفة لمدة2- 5 يوم ثم اختبر لنمو الفطر. 3- مقاومة" جراثيم البكتريـا للحرارة
 مرق مغذي عادي، هذا المعلق سبق تسـخين إجزاء منـه على درجة60 م ملمدة2 يوم,3 يوم,4 يوم, 7 يوم 2- حضن أنابيب المرق الملقح بهعلق Bubtilis السـابق الذـكر على درجـة حـرارة المعهـل لمـدة2-5 يـوم ثـم اختبر النمو الغشـائي على سطح البيئة للميكروب.

الغاز المتصاعد	الرواسب	مقدار التعكير	البيئات	-
			بيئة جراثيم البكتريا	1
			بيئة جراثيم الخمائر	2
			بيئة جراثيم الفطريات	3
			بيئة نقية بدون معاملة	4

أسئلة

س1 : أكمـل العبارات التالية:-
س 2
\qquad
\qquad

الأحيـاء الدقيقة في الأغذية

عد بكتريا الحليب بطريقة العد المباشر
.
13

اسه الوحلدة:عد بكتريا الحليب بطريقة العد المباشر. الجلارة:التعرف والكشف عن الميكروبات التي توجد يٌ الحليب.

الأهلداف:
1- أن يقوم المتدرب بالتعرف على الميكروبات التي تتواجد پٌِ الحليب..
2- أن يتعلم المتدرب كيفية إعداد البيئات وتعقيمها.

3- أن يقوم المتدرب باستخدام الميكروسـكوب بالطريقة الصـحيحة.

مستوى الأداء المطلوب :أن يصل المتدرب إلى إتقان الجدارة بنسبة 98٪. الوقتت المتوقتِ للتلدربب على الجلدارة:سـاعتان.

الوسائل المساعلدة:

1- وجود مختبر للأحياء الدقيقة مـجهز بجميع الأدوات الـلازمـة لإجراء الاختبارات المختلفة. 2- وجود بعض الأجهزة المسـاعدة مثل: المعقم- الحضان- جهاز العد الكلي للبكتريا.

3- استتخدام اللوحات التوضيحية المبينة لأشكـال الكائنات الحيـة الدقيقة.

متطلبـات الجلارة:

1 - أن يكـون المتدرب قادرا على تطبيق خطوات التجربة بدقة والتـرف على أنواع الأحياء الدقيقة التي
قام بتتميتها.
2- تحتاج الجد ارة التدريب مسبقا على كيفية استتخدام الأجهزة التي تستخدم پٌ الاختبار.

عد بكتريـا الحليب بطريقة العل الميكروسكوبي المبـاشر

Breeds method
 يقدر مساحة الحقل الميكروسكوبي ثم يؤخذ حجم معلوم من الحليب (100/1سمّ ³) وينشر على مساحة معلومة على الثـريحة(1 1سم2) ثم يترك الحليب ليجـف ويـزال منـه الـدهن بـالزيلول ثم يثبت الغشـاء ويصبغ
 ويضرب وٌٌ المعامـل الميكروســكوبي(microscopic factor) ويـلاحظ عد السـلاسل والبكتريـا المتجمعـة كـميكروب واحد وبذلك تعطى هذه الطريقة نتيجة مشابهة للعد على الأطباق الأدواتوالمواد اللازمة:

1- عينة حليب.
2- شـريحة ميكروميترية
3- ماصة باستير
4- شريحة بريد Breed أو شريحة مرسوم عليها 1 سمّ.
طريقة العمل
1- قدر مساحة الحقل الميكروسكوبي باستعمال العدسة الزيتية بالطريقة الآتية: أ) اضـبط الميكروســكوب على شـريحة زجاجيـة بها تـدريج ميكـروميتري Micrometric scale شـريحة ميكروميتريـة) باسـتعمال العدسـة الزيتيـة ثم ضـع نقطـة مـن زيت سـيدر على الـشريحة الميكرومتريـة ثم اضبط الميكروسكوب وحرك الشريحة الميكروميترية إلى أن يظهر طـرف التـدريج Scale يٌٌ أول الحقل

 والعكس صـحيح
ب) عد التـداريج الموجودة على طول قطر الحقل وهـذا العـد يجـب أن يكـون مـ141 إلى 16 وهـذا معنـاه أن قطر الحقل الميكروسكـوبيا 0.14-0.16 مم (140-160 ميكرون). ج) احسب مسـاحة الحقل الميكروسكـوبي يٌٌ صورة مربعة باستعمال المعادلة الآتية : r ${ }^{2} \Pi \quad$ المساحة

حيث إن ط= 3.14 П، نق= نصف القطر

$$
\text { فتإذا كان قطر المجال أو الحقل الميكروسكـوبي يساوي160 ميكرون } 30096 \text { =80X 80X ميكرون مريع } 3014 \text { ميكرون }
$$

1000x 1000x $10 \times 10=$ عدد المجالات أو الحقول الموجودة وِّاسمَأي المعامل الميكروسكوبي 20096
= 4976ؤ5000 تقريباً

ولإيجاد عدد الميكروبات يٌْاسمٌ من عينة الحليب يضرب المتوسط الحسـابي لعدد الميكروبات وٌ الحقل
الميكروسكوبي x المعامل الميكروسكوبي 100x حيث إن كمية الحليب الموضوعة هي1/100 سم³.
 بأخذ 100/1 سمُ 3 من الحليب باستعمال ماصة باستير المعقمة مع ملاحظة تجفيف طرف الماصة قبل وضعه
 الكهربائي الذي أمامك مع مراعاة عدم إحداث تشققات بالغشاء

ملحوظة:
يمكن استعمال غمس إبرة قياسية Galibrated loop حجمها يسـاوي/100 1سـمُ علمى ألا تعقمَ هذه الإبرة باللهب بل تعقم بغسسها پٌِ ماء يغلي ثم تجفيفها بفوطة نظيفة معقمة.

 ثم اغسلها بالماء وبعد تجفيفها افحصها بالعدسـة الزيتية

4- عد الميكروبات وِ25 مجالا واحسب العدد الكلي بالطريقة السـابقة

الحسـاب	الخطوات
	1- قطر الحقل الميكروسـكوبي باستعمال العدسة الزيتية (ميكرون) 2- مسـاحة الحقل الميكروسكـيك للعدسـة الزيتية (ميكرون مريع) . 3- عدد الحقول الميكروسكوبية وٌ 1سم² 4- المتوسـط الحـسـابي لعـدد الميكروبـات پِن الحقـل الميكروســـكـوبي الواحد وذلك بعد عد البكتريا 5- عدد البكتريا پِ 1سم³ 3

قد تستعمل صبغة نيومان New-mans stain مباشـرة بغمر الغشـاء فيها لمدة15 ثانيـة حيث إن تركيبها يسهـح بإزالة الدهن ويثبت الغشـاء وصبغ البكتريا.|مل الشـريحة للتخلص من الصبغة وهذا يستغرق حوالي 30 ثانيـة ثم تفسـل بالماء ثم تجفف على المصباح الكهربائي وتفحص بالعدسـة الزيتية وفيما يلي تركيب الصبغة :

1جرام أزرق الميثيلين
54 سـم³ كحول الايثايل
40 ســ 30 رابع كلورور الإيثان
6 سـمٌ 3 حامض خليك ثلـجي.
يضـاف الكـحول إلى رابع كلورور الإيثان ويسـخن على حهـام مـائي على70 مْ (بحيـث لا يزيـد عـن
هــذه الدرجـة)ثم يـضـاف المـخلـوط إلى الميـثلين الأزرق ويـرج إلى أن تـذوب الـصبغة ثـم يـبـرد ويـضـاف حـامض
الخليك ببطء ثم يرشـح.
ملحوظة:
أهم عيوب هذه الطريقة: هو ظهور الميكروبات الحية والميتة وبذلك تعطى أعداد كبيرة كهـا
يـلاحظ أن سمك الفشـاء قد أهمل يْ الحسـابات السـابقة.

من أهم مزايا هذه الطريقة: السـرعة يِّ إجرائهـا كهـا أنهـا تعطي فـكـرة عـن أنـواع البـكتريـا الموجـودة وِ الحليب وعن وجود التهاب الضرع من عدمـه حيث تظهر كرات الدم البيضـاء.

الوحدة الرابعة عشر
 126صنع
 الأحياءالدقيقة في الأغذية
 التخصص
 عد بكتزيـا الحليببطريقة العد المباشر

 أسئلة

 أسئلة
 س1 :أكمل العبارات التالية:

. - - - - - - - - - - - -
2- مسـاحة الحقل الميكروسـكوبي عبارة عـن-

3 المتوسط الحسـابي لعدد الميكروبات وٌ الحقل الميكروسكوبي يسـاوي- - - - - -

4- تفمس الشريحة يِّ كحول 95٪ ثم تترك لمدة- - - - - - - - - -

> 5- أهــم عيـوب هــذه الطريقـة -
6- أهم المزايا -

المحتويـات

المقدهـة

الوحدة الأولى : الاحتيـاطات الخـاصة بـالمـتتبر والتعـرف على الأجهزة
الوحدة الثانية : مصـادر التلوث
الوحدة الثالثتة :مواصفـات المستتعمرات البـكتيـريـة الوحدة الرابعـة :الفطريـات يِ الأغذيـة الوحدة الخامسـة :الخـمـائر بِ الأغذيـة الوحدة السـادسـة : بـكتريولوجيـا الميـاه الوحدة السـابعـة:الإنـزيــات البـكتيـريـة الوحدة الثـامنـة : تابع الإتزيـــات البـكتيـريـة

الوحدة التاسـعة: الاختبـارات التي تجـرى على الفواكة المجففة
الوحدة العاشـرة:الاختبـارات التتي تـجرى على الدقيق
الوحدة الحـادي عشـر:الاختبـارات التي تجـرى على المشـروبـات المعبـأة الوحدة الثانيـة عشـر :الاختبـارات التي تـجـرى على الأغذيـة المعلبـة غير الفـاسـدة الوحدة الثالثة عشر :دراسة هقاومة جراثيم (البكتريا- الفطريات- الخمائر) للحرارة الوحدة الرابعـة عشـر:عد بـكتريا الحليـب بطريقة العد الميـكروســكوبي المبـاشـر المـلاحق

