الخرسانة الرغوية

Foam Concrete

مقدمة

الخرسانة الرغوية هي احدى اشكال الخرسانة الخفيغة والتي تعرف على انهـا الخرسـانة الـتي
تقل كثافتها عن كثافة الخرسانة العادية، حيث ان كثافة الخرسـانة العاديــة تـترواح هـابين Y Y •
 .1^..

وشهد استخدام هذه الخرسانة ازديادا كبيرا في الاونة الاخيرة لما لهــا مـن فوائـد ومزايـا عديـدة
سواء من حيث قدرتها العالية على العزل الحراري، او من حيث جدواها الاقتصادية نظرا لخفـة وزنهـا وكثافتها مما يمكنها من تقليل التكلفة الاجمالية للمبـاني الـتي يـتم اسـتخدامها فيهـا. كمـا ان سـهولة استخدامها نتيجة السيولة الكبيرة التي تتمتع بها وسهولة تشكيلها وضبط جودتهـا تجعـل اسـتخدامها مرغوبا ومطلوبا. كل ذلك اضافةالى مزايا وفوائد عديدة سيتم التطرق لها فيمـا بعـد يجعـل الاقبـال على استخدام الخرسانة الرغوية في ازدياد مستمر. وتستعمل الخرسانة الرغوية في العديد مـن التطبيقـات سـواء في اعمـال ردم الخنــادق او طبقـات اساس الطرق او في الجدران والاسقف والارضيات، كما يمكن انتاج الطوب الخفيف مـن هـذا النـوع مـن الخرسانة. وفي الغالب تستعمل الخرسانة الرغوية في صبات الميول للأسططح (صبة المـيلان) نظـرا لأنهـا خفيفة الوزن ذات سطح املس وناعم، اضافة إلى وجود الغراغات داخلها والذي يـؤدي الى زيــادة العـزل الحراري للأسطح، حيث حددت المواصفات الامريكية (ASTM C332) كثافـة الخرسـانة العازلـة للحـرارة (Thermal Conductivity) لهذه الخرسـانة (Insulating Concrete)

 كغم / م".

ان الخرسانة الرغوية لها صفات فيزيائية مميزة نظرا لخفة وزنهـا وقلـة كثافتهـا، ممـا يكسـبها خصائص اضافية كمقاومتها الميكانيكية والموصلية الحرارية ومعامل تمددها الطولي ومعـاملات الانكمـاش بالجفاف والتمزق والمرونة والعزل الصوتي ومقامتها للظروف الجوية المختلفة اضافة لمقاومتها للحريق. ويمكن انتــاج الخرسـانة الرغويـة بطـرق ووسـائل متنوعـة وذلـك لاسـتعمالها في اغـراض العـزل الحراري او اية اغراض اخرى، ومن هذه الطرق استعمال المواد الراغية او المواد الحابسة للـهواء، او مـن خلال احداث تغاعلات كيماويـة تنتج غازات تدخل بين مكونات الخلطـة، وتسـمى الخرسـانة الرغويـة باسماء مختلفة تبعا للطريقة التي يتم انتاج الخرسانة بها.

انواع الخرسانة الخفيفة

كما ذكر سابقا فان الخرسانة الرغوية هي احدى اشكال الخرسانة الخفيفة، حيث تقسـم الخرسـانة
الخفيفة العازلة للحرارة الى نوعين رئيسيين :

ا. الخرسانة الرغويـة (Foam Concrete) :
وهي عبارة عن خلطة من الأسمنت والرمل وبعض المواد الكيماويـة المضـافة والـتي تخلـط في خلاطـة عادية وتضخ بمضخة خاصة حيث تؤدي هذه العملية إلى إحداث فقاعات هوائية داخـل الخلطـة وذلـك بادخال كمية من الهواء او الغاز اثناء ضخها، بحيث ينتج من ذلك تكون خلايا مملوءة بالغاز او الهـواء في العجينة الاسمنتية مما يؤدي الى انخفاض كثافتها بعد ان تتصلد وزيادة حجمها وخفة وزنها، وتتعلق كثافة الخرسانة الناتجة بكمية الهواء الداخل في تركيبها.

وتسـمى هـذه الخرسـانة ايضـا بالخرسـانة الخلويـة (Cellular Concrete).او الخرسـانة الغازيـة Gas)
(Pore Concrete) او الخرسانة المسامية Concrete).
تستعمل هذه الخرسانة غالبا في صبات الميول للاسقف (صبة الميلان) نظرا لأنها خفيفـة الـوزن ذات
سطح املس وناعم، اضافة إلى وجود الفراغات داخلاها والذي يؤدي الى زيادة العـزل الحـراري للأسـطح حيث انها تتمتع بخواص عالية للعزل الحراري.

الا ان الخرسانة الرغوية ذات الكثافة المنخفضة تعتبر هشة وضعيفة ولذلك تحتـاج إلى عنايـة كـبيرة اثناء التنفيذ وما بعده، حيث يمكن ان يؤدي القيام ببعض الأعمال فوقها الى بعض التكسـر والتصـدعات والانضغاط.
Y. خ. خرسانة الركام الخفيف (Lightweight Concrete) وتنتج هذه الخرسانة باستعمال مواد اولية مختلفة من الركام خفيف الـوزن، حيـث يحتـوي الركـام نفسه في هذه الحالة على خلايا هوائية ومسامات تؤدي الى انخفاض كثافة الخرسانة المنتجة منه والـتي تقل عن كثافة الخرسانة العادية المحتوية على الركام التقليدي. كما يمكن انتاج خرسانة خفيفـة (خرسـانة رغويـة) بـدمج النـوعين وذلـك بالاستعاضـة عـن الرمـل الطبيعي الذي يدخل في تركيب الخرسانة الرغوية بركام ناعم خفيف الوزن.

ميزات استخدام الخرسانة الرغوية

اصبح استخدام الخرسانة الرغوية في البناء أكثر فأكثر شيوعا واستعمالا لـا لهذه الخرسانة من ميزات
وايجابيات عديدة، ومن اهم هذه الميزات:

1. ذات جدوى اقتصادية عالية اذا ما تم مقارنتها مع المواد الاخرى والـتي يمكـن استخدامها في نـس المجال وذلك للاسباب التالية:
í ان استخدام الخرسانة الرغوية يؤدي الى تقليـل وزن المنشـأ (وذلـك لان هـذه الخرسـانة يـتراوح وزنها ما بين • ا ٪ إلى •^ ٪ مقارنة بالخرسانة العاديــة ويعتمـد وزنهـا علـى مكونـات ونسـب الخلط) مما يؤدي الى التقليل في ابعاد الاساسات وكميات الحديـد المستخدمة وذلـك مـن خــلال عمل تصميم اكثر فعالية، اضافة الى ان استخدام الخرسـانة الرغويــة يـؤدي الى تخفيـف الحمـلـ
 الصغيرة ولذلك وعلى الرغم من ان سعر المتر المكعب من الخرسانة الرغوية يقارب سعر مثيله من الخرسانة العادية، الا ان تكلفة المنشأ الاجمالية تقل.

3C3C
 ilding \& Construction
 Research Center

ب. ان استخدام الخرسانة الرغوية يؤدي الى تقليل ننقـات النقـل وذلـك لان الكميــة الـتي تـورد الى الموقع تقل بنسبة •r٪ - - •r٪ من الكمية اللازمة حيث يستعاض عن هذه الكمية بالهواء الـذي

يتم توليده في الموقع.
ع• ان استخدام الخرسانة الرغوية خفيفة الوزن في الاجزاء هسبقة الصنع وفي المباني القشرية يتطلب وجود رافعات ذات قدرة منخغضة نسبيا، وجهد اقل اثناء عملية الصب.

كما انه ونتيجة لميزات العزل الحراري الجيدة للخرسانة الرغوية يتم توفير الطاقة في التدفئــة و
التبريد
r ب. ذات انتاجيـة عاليـة، حيث يمكن وبسهولة رفع الانتاجية من خلال استخدام عمالة قليلة وذلك لان استخدام الخرسانة الرغوية لا يحتاج الى معدات اضافية مثل الرجاجات وغيرها.「. سهلة الاستخدام والتشكيل، وذلك لانها ذات انسيايبة وقابلية تشغيل عالية مما يتيح لها الـدخول في الفجوات والغتحات دون أي عناء او جهد وبشكل سلس، كما انه يمكن ضخ الخرسانة الرغوية افقيـا وعموديا ولمسافات طويلة دون حـدوث النضـح (Bleeding) او الانغصـال الحبـيبي (Segregation)، كمـا انــ يمكن التعامل معها او ازالتها بسهولة بعد تصلبهـا وبمعـدات عاديـة. اضـافة الى ذلـك فانـه مـن الممكـن

صبها بقوالب وباشكال مختلفة.
اضافة الى ما تقدم فانه يمكن تلخيص وادراج العديد من المزايا الاضافيـة للخرسانـة الرغويـة: - مادة عازلة للحرارة والصوت بشكل ممتاز.

- مادة اقتصادية مقارنة مع المواد الاخرى والفوائدالناتجة عن استخدامها. - خفـة وزنهـا تـؤدي الى تقليـل وزن المبــني المسـتخدمة فيهــا ممـا يقلـل مـن حـدوث الهـبـوط فيهـا
.(Settlement)
- سهولة التعامل معها حيث يمكن تصنيعها ضمن مواصـفات وقـوة وكثافــة محـددة وبشـكل مسـبق؛ ، ويمكن التحكم بجودتها بسهولة، كما انهـا تسـتقبل بسـهولة رولات البيتيـومين او الـبلاط او الـدهان،

اضافة الى ان لها قابلية تشغيل عالية (Workability).

- مادة سائلة مما يمكنها من ملء الفجوات والغتحات بسهولة دون عوائق.
- لا تتطلب عمليات رج او دمك أثناء الصب، ولا تتطلّب اية معالجة اضافية او خاصة بعد الصب.
- تقاوم الظروف الجويـة المختلفة حيث انها.ذات امتصاصـية مذخفضـة للرطوبـة، ولاتتـأثر بـاختلاف درجات الحرارة. - لها خاصية مقاومة الحريق. - مادة غير ضارة وصديقة للبيئة ويمكن اعادة تصنيعها.

مجالات استخدام الخرسانة الرغوية

ا. ردم الخنادق (Trench reinstatement) واعمال تسوية الطرق:
تعتبر الخرسانة الرغوية مادة مثالية لملء الخنادق واعمال الحفر المختلفة فهـي لاتحتــج الى دمـك او رج بخلاف المواد الاخرى التي قد تستخدم لنفس الغرض حيث انها تملأ اعمال الحفر والخنادق بشكل تـام

ولا يحدث أي هبوط فيها بعد صبها، مما يعني انها تكون جاهزة لاستقبال الطبقات النهائية. كما يمكن استخدام الخرسانة الرغوية كقاعدة لبناء الطرق او طبقة اساس وتكون هذه الطرق أخف وزنا ولا يحدث فيها هبوط مقارنة بالطرق التي تستعمل الحجر التقليدي كطبقة اساس. وتستخدم الخرسانة الرغوية في بناء الأنغاق من خلال استخدامها في ملئ الغرغات والتجاويف التي قـد تظهر اثناء بناء الانفاق
Y. الجدران:

كون الخرسانة الرغوية سائلة، ولها قابلية تشغيل عالية مما يتيح المجال امام استخدامهـا كمادة مالئـة مثالية للفجوات والتجاويف او الفراغـات في المبـاني حتـى في الأمـاكن ذات الفتحــات الصـغيرة والـتي يصعب الوصول اليها بشكل تام وسهل، حيث يمكن استخدامها لحشـو التجــاويف في مبــنى الطـوب لزيادة عزل الجدران، ويتم استخدامها ايضا كمادة حشو عندما تكون متطلبات العزل الحراري عاليــة، اضافة الى استخدامهـا في القواطع والتقسيمات او الجدران غير الحاملـة، وتسـتخدم الخرسـانة الرغويـة ايضا في الطوب او الجدران الخارجية.

شـ. الارضيات والاسقف:
تستخدم الخرسانة الرغوية كعازل حراري في الأسقف و مدة الأرضيات ولاعمال التسوية وصبات الميلان. كما يمكن استخدامهـا كمادة مالئة اسفل البلاط في الارضيات وبهـذا تكـون الارضـيات جــاهزة لاسـتقبال

3C7C Building
 ilding \& Construction
 Research Center

البلاط، كما تستخدم الخرسانة الرغوية لعمل الواح تغطية الاسقف المعلقة والمستخدمة في العزل الحراري او العزل الصوتي سواء في المساكن او الابنية التجارية او مباني المؤسسات.
£. استخدامات مختلفة:

- في اعمال تنسيق الحدائق والديكورات الخارجية.
- في بناء ملاعب التنس او كرة السلة او الكرة الطائرة او في مضمار الجري.
- في حقن التربة لتقويتها ومنع انزلاقها.
- يمكن استخدامها بدل الردم خلف الجدران الاستنادية وفي حالات معينة - لإعادة بناء المباني القديمة، او ترميمها. حيث يمكن استخدامهافي اعمال الترميم والاصـلاح للمبـاني القديمة نظرا لخفة وزنها وسهولة التعامل معهها.

الخصائص الفيزيائيـة للخرسانة الرغويـة

بشكل عام فان الخرسانة الرغويـة ولخفة وزنهـا تتصف بقلة كثافتها، الامرالـذي يـؤثر بشـكل او بـآخر علـى خصائصـها الاخـرى كمقاومتهـا الميكانيكيــة والموصـلية الحراريـة ومعامـل تمسددها الطـولي ومعاملات الانكماش بالجفاف والتمزق والمرونة والعزل الصوتي ومقامتها للظروف الجوية المختلفة اضـافة لمقاومتها للحريق. .الخ وهناك مؤثرات عديدة تلعب دورا في كل خاصية من الخصائص المذكورة فبالاضـافة الى محتـوى الهـواء، اي نسبة حجم الفراغات في الخرسـانة وتوزيعهـا،فـان المـؤثرات الاخـرى التاليـة لهــا تـأثير علىنوعيــة وخصائص الخرسانة الخفيفة المنتجة : - نوع الركام المستخدم وخواصه وتدرجه. - نسبة الماء الى الاسمنت (W/C- Ratio). - نسبة الاسمنت الى الركام (بالحجم) (C/A- Ratio).

- درجـة الدمك (Degree of Compaction). - خاصية التشغيل والقوام (Workability \& Consistency). - طريقة الايناع (Curing Method).

ويمكن في هذا المجال ادراج المواصفات والخصائص التاليـة:

مقاومة الكسر :
تعتمد مقاومة الكسر لكافة اصناف الخرسانة الرغوية على عدة عوامل مثل الكثافة ونسبة الماء الى الاسمنت ، ونسبة الاسمنت الى الركام، ودرجــة الـدمك والتشـغيل وطريقـة الاينــاع، حيـث ان نقصـان مقاومة الكسر يكون بسب نقصان الكثافة، شأنها في ذلك شأن باقي انواع الخرسانة العادية اوالخفيفة. ولتحسين خواص الخرسانة الخلوية فيما يتعلق بمقاومة الكسر والانكماش فيتم ايناعهـا بالبخـار حيث تزداد قوة الخرسانة الرغوية الى الضعف.. وبشكل عام وكمثال على ذلك فقد وجد ان الخرسانة الرغوية ذات الكثافة التي تـتراوح هـا بـين
 ميجاباسكال.

الموصليـة الحراريـة:
ان خاصية العزل الحراري العالية التي تتمتع بها الخرسانة الرغويـة تعود الى العـدد الكـبير مـن الفراغات الهوائية الموجودة بداخلها والتي تكون عبارة عـن خلايـا كثيغـة مـن حيـث العـدد، وتـتراوح الموصلية الحرارية للباطون الرغوي من ه ••• -

مقاومة الظروف الجوية:
للخرسانة الرغوية القدرة على مقاومة الظروف الجوية المتقلبة، وذلـك بسـب خاصـية الانكمـاش بالجفاف (Drying Shrinkage) العالية لهـذه الخرسـانة والـتي يـتم ايناعهـا بـالهواء الرطـب (Moist Cured)؛ حيث تبلغ نسبة الانكماش للخرسانة الرغوية حوالي عشرة اضعاف نسبة الانكماش للخرسانة العادية.

العزل الصوتي :

تعتـبر الخرسـانة الرغويـة عازلـة جيـدة للصـوت، حيــث ان لهـا قـدرة عاليــة علـى امتصـاص الاصوات، فقد وجد ان معامل امتصـاص الصـوت للخرسـانة الرغويـة ذات الكثافـة .. .

3C7C
 ilding 8 Construction Research Center
 Research Center

هس, • وهو ما يعادل استخدام طبقة من القصارة العازلة للصوت، وبذلك فان استخدام الخرسانة الرغويــة يغني عن استخدام القصارة العازلة للصوت.

مقاومة الحريق:

الخرسانة الرغوية في مجملها مادة غير عضوية وبالتالي غير قابلة للاحتراق، وقـد دلـت العديـد
من التجارب في دول مختلفة وحسب المواصفات الامريكية ASTM، على ان بلاطة من الخرسانة الرغويـة

طرق انتاج الخرسانة الرغويةة :

يتميز هذا النوع من الخرسانة الخفيفة بكثافات مذخفضة تقل عادة عن انواع الخرسانة الخفيفـة الاخرى مما يجعلها مناسبة بشكل خاص لاستعمالات العزل الحراري في البناء. كما ان هـذه الخرسـانة لها مقاومة ميكانيكية منخغضـة اذا مـا قورنـتـ بالخرسـانة العاديـة او الانـواع الاخـرى مـن الخرسـانة الخفيفـة وقـد سـجلت الخرســانة الرغويـة كــاختراع لاول مـرة في السـويد في عــام 19ヶ9 حيـث انتشـر استعمالها بسرعة في الدول الاوروبية الاخرى والكثير من بلدان العالم.

ويتم انتاج هذا النوع من الخرسانة الخفيفة كما ذكر سابقا بادخال كميـات مسن الهـواء او الغــاز خلال عملية الخلط مما يتسبب في تكون خلايا او فقاعات هوائية كثيرة في تركيبها وبالتالي الى انخفاض كثافتها. وتتعلق كثافة الخرسانة الناتجـة بحجم الخلايا والمسامات الهوائية الموزعة فيهـا. و هناك عدة وسائل لانتاج الخـايا الهوائية اوالغازية في الخرسانة الرغوية يمكن اجمالهــا بـالطرق

أ. استعمال المواد الراغية (Foaming Agents).
ب. استعمال المواد المضافة للخرسانة كالمواد الحابسة للهواء (Air Entraining Agents). ج. احداث تفاعلات كيماوية مولدة للغازات.

في هذه الطريقة يتم اضافة مواد راغيـة (Foaming Agents) بعـد تخفيفهــا بالمــاء بنسـبة معينـة الى الخلطـة الخرسانية والتي تتكون من الاسمنت والرمل والماء حيث يمكن انتاج خرسانة بكثافـة تـتراوح بـين . . 1^... ان احتواء الخرسانة الرغوية الناتجة من هذه الطريقة على مسامات وخلايا بشكل متناسق ومتجـانس في كامل الخلطة، يؤدي الى اكسابها مزايا خاصة كانسيابيتها العالية وسهولة صبها وتشكيلها. وكما ذكر سابقا فانه يمكن انتاج خرسانة رغوية باضافة الركام الخفيف (الخشن والناعم) الى الخلطـة، حيث يتيح استخدام Foaming Agents في هذه الحالة من انتاج خرسانة تمتاز بمقاومة عالية وخاصية عزل حراري جيدة تجعل من الممكن استخدامهـا كجدران انشائية عازلة. انواع المواد الراغيـة:

يشترط في المواد الراغية ان لايكون لها اي تأثير كيماوي على مكونـات الخرسـانة هـن الاسمنـت والرمل او الركام والماء وان لا تتفاعل معهـا كيماويا، كما انه من الضروري ان تكون الرغـوة الناتجـة عـن استخدام هذه المواد ثابتة (Stable Foam) بمعنى ان الفقاعات الهوائية الموكونـة للرغـوة غـير قابلـة للتلـف والتهشم بسرعة وذلـك طيلـة الفـترة اللازمـة لتصـلد الخرسـانة. حيـث ان الاخـتلاف القليـل في كثافـة الخرسانة الطازجـة خـال (0؟) دقيقة بعد الخلط يدل على ثبات الرغوة. ويوجد هناك نوعان من المواد المضافة الراغية:

- مواد راغية اصطناعية(Synthetic Foaming Agents) ومن ابرز صفاتهـا : - كثافة الرغوة الناتجة • \& غرام/لتر او اقل. - كثافة المادة في حالتها المركزة من 1-1, اغرام/سمّ. - ذات لون شفاف مائل الى الصغرة. - يمكن انتاج الرغوة بخلطها بالماء بنسبة •؟: ا بسهولة. - يمكن الاحتفاظ بصلاحيتها للاستعمال لمدة طويلةفي حالتها المخففة بالماء. - مواد راغيـة عضـوية او بروتينيـة (Organic Foaming Agents) ويـتم انتاجهــا بشـكل رئيسـي هـن بقايــا الحيوانات المتحللة، ومن ابرز صفاتها :
- كثافة الرغوة الناتجة من • - - . 1 غرام/لتر.
- كثافة المادة في حالتها المركزة من 1,1 1, با غرام/سمّ. - ذات لون بني داكن ذو رائحـنغاذة.
- يمكن الاحتفاظ بها لمدة طويلة من الزمن دون ان تتلف.في حال عدم تخفيفها بالماء - تتحلل بعد فترة قصـيرة في حــال تخفيـف المــادة بالمـاء بنسـبة • • : او •؟ : ا وتصـبح غـير صالحة للاستعمال خاصة بغعل الحرارة.

ويتم انتاج الخلايا في الخرسانة الرغويـة بوساطة المادة الراغيـة بـاحدى الطريقتين التاليتين : أ. انتاج الرغوة بشكل هسبق (Preformed Foam) :

يمكن الحصول بهذه الطريقة على نسبة مسامات تصل الى •^.٪ بـالحجم مـن في الخرسـانة الناتجـة (^•• لتر مسامات لكل متر مكعب) ، حيث تتم عملية الخلط كالتالي:

1. تخفف المادة الراغية بالماء بنسبة معينة.
Y. .r يتم ادخالها في جـهاز خاص مولد للرغوة (Aerator) او (Foam Generator) وذلك باضافة هواء مضغوط

في المولد يساعد على انتاج الرغوة المطلوبة.
r. تضاف الرغوة الناتجة من الجهاز المولد للرغوة الى الخلطة الخرسانيـة وتمـزج الرغـوة في الخلـيط جيدا وبعنايـة، حيـث تضـاف الرغـوة الى الخلطـة بكميـات معينـة تتحـدد علـى اساسـها كثافـة الخرسانةالمرغوب الحصول عليها، كل ذلك مع مراعاة اضافة الرغوة الخارجــة مـن الجهــاز المولـد مباشرة الى الخليط قبل ان تبدأ بفقدان خواصها الرغوية. ب. انتاج الرغوة بواسطة الخلط الميكانيكي (Mix-Foaming): تصل نسبة الخلايا الهوائية الناتجة بهذه الطريقة الى ه٪٪ بالحجم من الخرسانة، حيث تتم عملية الخلط وتتابع اضافة المواد حسب توصيات معهد الخرسانة الامريكي (ACI) كالتالي :
Y. ب. توضع كمية الرمل اوالركام اللازمة في الخلاط.
r. يضاف الماء الضروري للخلط في الخلاطة مع اية مخاليط قابلة للذوبان بالماء يراد اضافتها.

؟. يتم اضافة المادة الراغية في حالتها المركزة او بعد تخفيفها بالمـاء بنسـبة معينـة الى خلـيط المــاء والاسمنت على ان تتم عملية الخلط بشكل جيد وذلك حتى يتم توليد الرغوة خلال عملية الخلـط
مباشرة.

ب. استعمال المواد المضافة للخرسانة كالمواد الحابسة للهواء (Air Entraining Agents): هي مواد تكون على شكل سائل كيماوي و هي مواد مضافة للخرسانة ومولـدة للـهواء Air Entraining) تضاف الى الخلطة الخرسانية التي تتكون كما ذكر سابقا من الاسمنت والماء والرمل او الركــام الخفيف الوزن. حيث يكون الناتج بعد اضافة المواد الحابسة للهواء خرسانة خفيفة تصل فيها نسبة الهواء المولد الى .

التفاعلات الكيماويـة المولدة للغازات:
تعتمد هذه الطريقة لانتاج الخرسانة الرغوية على اضافة بعض المـواد علـى شـكل مسـاحيق تتفاعـل كيماويا مع مكونات الخلطة الاسمنتية بحيث تطلق الغازات التي تعمل على نفخ العجينة الاسمنتية ويتم التفاعل بوجود الماء ضمن كتلة الخرسانة الطازجـة خــلال عمليــة الخلـط واثنــاء المرحلـة اللدنــة

للخليط الاسمنتي.
و من اهم الطرق المستعملة في هذا المجال هي اضافة مسحوق الالمنيـوم الى الخلطـة الاسمنتيـة حيـث تتم عملية الانتاج على النحو التالي : ا. يتم مزج المكونات الاساسية والتي تحتوي على الاسمنت والرمل والماء باضافة مسحوق الالومنيوم

في خلاطة مركزية.
「. بعد المزج مباشرة يتم صب الخلطة والتي تكون على شكل عجينة سائلة في قوالب كبيرة بحيـث يملأ المزيج جزء من هذه القوالب.

ب. يحدث تغاعل الالومنيوم مع الجير المتولد عن الاماهـة (Hydration) او المسـتعمل كمـادة رابطــة في الخلطـة الاسمنيــة حيـث ينـتج عـن التفاعـل الومينـات الكالسـيوم (Calcium Aluminates) وغـاز
الهيدروجين الضروري لتكوين الخالايا المسامية في الخرسانة.

3C3C
 ilding \& Construction Research Center

؟. يمكن اضافة هيدروكسيد الصـوديوم (Sodium Hydroxide) مـع مسـحوق الالومنيـوم لتسـريع عمليـة الاماهة وتوليد الهيدروجين اللازم لتشكيل الخلايا.

ه. نتيجة لهذا التفاعل يحدث انتفاخ في العجينة الاسمنية داخل القالب حيث تملأ القالـب وتبـدأ تدريجيا بالتصلب.
Y. بعد ذلك يتم تقطيع محتوى القوالـب بطريقـة اوتوماتيكيــة الى طـوب او بلوكـات بابعـاد معينــة حيث يكون القالب لايزال لينا وسهل التقطيع. .V يتم ايناع الاشكال المنتجة في جهـاز الايناع بالبخارتحت الضـغط (Autoclave) لتخـرج منـه القطـع المصنعة من الخرسانة الخلوية باشكالها النهائية القابلة للاستعمال المباشر. كما يمكن الاستعاضة عن مسحوق الالومينوم بمسحوق الخارصين او الزنـكك (Powdered Zinc) حيـث ينـتج عن التفاعل زنكات الكالسيوم وغاز الهيدروجين. ومن الطرق الاخرى التي يتم فيها توليد الغازات بطريقة التفاعل الكيماوي، طريقة توليد غاز الاكسجين
 الى الخلطة الاسمنية
 بالتحكم بكمية المساحيق المستعملة|و المواد المضافة المولدة للغــز. وبشـكل تقـريبي يمكـن الحصـول علـى
 في عملية الخلط لكل متر مكعب من الخرسانة.

