SOIL MECHANICS "First Part" Third YEAR CIVIL

Prof. Dr. Mahmoud Mohammed EI-Meligy

Course Contents:

- Stresses in a Soil Mass
- Settlement of Soil
- Lateral Earth Pressure
- Subsoil Investigation

(<u>Page:3</u>)

(*Page*:19)

(*Page*:51)

(<u>Page:68</u>)

Vertical STRESSES

Vertical Stresses in a Soil Mass

INTRODUCTION

- Overburden stresses.
- Vertical Stress increase due to foundation loads
- Two-dimensional Problems
 - Stress due to strip load
- Three-dimensional Problems
 - Stress due to vertical point load
 - Stress due to a circularly loaded area
 - Stress below a rectangular area
 - Stress due to triangular load on rectangular area
- Newmark's chart
- Approximate method
- Homework

OVERBURDEN STRESSES:

- → Pore water pressure
- → Effective stresses
- ➔ Total stresses

Total vertical stress

$$\sigma_A = h_1 \gamma + h_2 \gamma_{sat}$$

The total vertical stress is carried partially by the pore water in the void spaces and partially by the soil solids at their points of contact

$$\sigma_A = u_A + \sigma_A$$

- Changes in effective stresses will induce volume changes.

1

Effective stress is also responsible for producing frictional resistance in soils and rocks

$$\sigma_{A} = \sigma_{A} - u_{A}$$

1

$$\sigma_{A} = (h_1 \gamma + h_2 \gamma_{sat}) - h_2 \gamma_{w}$$

$$\sigma'_{A} = h_{1} \gamma + h_{2} (\gamma_{sat} - \gamma_{w})$$

$$\sigma'_{A} = h_{1} \gamma + h_{2} \gamma_{sub}$$

Submerged
unit weight

EXAMPLE:

Determine the total stress, pore water pressure, and effective vertical stress at A, B, and D.

At D

 $\sigma_{\rm D} = 6x16.5 + 13x19.25$

 $\sigma_{\rm D}$ = 349.25 kN/m2

 $\sigma_{\rm D}$ = 13x9.81 =127.53 kN/m2

 $\sigma_{\rm D} = 6 \times 16.5 + 13 \times (19.2 - 9.81)$

 $\sigma_{\rm D} = 6 \times 16.5 + 13 \times (19.2 - 9.81) = 221.72 \text{ kN/m2}$

Vertical stress increase due to foundation loads:

Assumptions:

The soil mass is:

- 1- Elastic
 - 2- Isotropic
 - 3- Homogeneous
 - 4- Semi-infinite medium
- Rigid footing
- Flexible footing

Two-dimensional problems :

Stress due to strip load

Example using EXCEL:

q t/m ²	В	X 1	Z 1	eta deg	eta rad	δ deg	δ rad	Vertical stress
5	4	3	1	33.70716	0.588003	45.02282	0.785398	0.446353974

Variation of vertical stress with depth at distance 3.0 m from C.L of a strip load

VERTICAL STRESSES

Stress Isobars:

Vertical stress isobars under a flexible strip load

Three-dimensional problems :

Stress due to vertical point load:

Stress due to a circularly loaded area:

CASE A : Vertical stress under the center of circular loaded area:

Distribution of stresses under center of

flexible circular loaded area

CASE B : Vertical stress at any point in the soil:

Dsz can be obtained using the next table

Variation of Ds_z/q for uniformly loaded flexible circular area:

	z/R	↓ r/R						
		0.0	0.2	0.4	0.6	0.8	1.0	
	0.0	1.000	1.000	1.000	1.000	1.000	1.000	
	0.1	0.999	0.999	0.998	0.996	0.976	0.484	
	0.2	0.992	0.991	0.987	0.970	0.890	0.468	
	0.3	0.976	0.973	0.963	0.922	0.793	0.451	
	0.4	0.949	0.943	0.920	0.860	0.712	0.435	
⇔	0.5	0.911	0.902	0.869	0.796	0.646	0.417	
-	0.6	0.864	0.852	0.814	0.732	0.591	0.400	
	0.7	0.811	0.798	0.756	0.674	0.545	0.367	
	0.8	0.756	0.743	0.699	0.619	0.504	0.366	
	0.9	0.701	0.688	0.644	0.570	0.467	0.348	
	1.0	0.646	0.633	0.591	0.525	0.434	0.332	
	1.2	0.546	0.535	0.501	0.447	0.377	0.300	
	1.5	0.424	0.416	0.392	0.355	0.308	0.256	
	2.0	0.286	0.280	0.268	0.248	0.224	0.196	
	2.5	0.200	0.197	0.191	0.180	0.167	0.151	
	3.0	0.146	0.145	0.141	0.135	0.127	0.118	
	4.0	0.087	0.086	0.085	0.082	0.080	0.075	

Stress below a rectangular area:

0.16

0.14

0.10

0.08

0.06

0.04

0.02

0.00

I₂ 0.12

Copyright[©] Dr. M. El-Meligy (2006)

1.0

0.10

0.5

0.4

0.3

0.2

= 0.1

FIGURE 5.18 Variation of I2 with m and n

Soil Mechanics

Stress below any point of a loaded flexible rectangular area:

$$\Delta \sigma_{z(a)} = q (I_1 + I_2 + I_3 + I_4)$$

Stress due to triangular load on rectangular area:

At point E₁

Copyright[©] Dr. M. El-Meligy (2006)

NEWMARK'S CHART:

Approximate (2:1) method:

Settlement of Soil

Settlement of Soil

Outline:-

- Introduction
- Types of Foundation Settlement
- Immediate Settlement
- Consolidation Settlement
- Primary Consolidation Settlement
- Secondary Consolidation Settlement

INTRODUCTION:-

- 20 m Circular Base
- 5m Out of Plumb (South)
- Weak Clay Layer at 11m

Leaning tower of Pisa

TYPES OF FOUNDATION SETTLEMENT:-

Definitions:-

- **Immediate Settlement** of a foundation: takes place during or immediately after the construction of the structure. (All soil types)
- **Primary Consolidation Settlement:** is the result of volume change of saturated clayey soils due to the expulsion of water occupying the void spaces at load application.
- Secondary Consolidation Settlement: occurs at the end of primary consolidation settlement due to the plastic adjustment of soil fabrics.

IMMEDIATE SETTLEMENT (ELASTIC SETTLEMENT):-Based on the theory of elasticity: Q Settlement of flexible footing Footing D_f BxL Settlement of rigid footing Н Soil **Rigid base (Rock)** Elastic settlement of flexible and rigid footing

Foundation on soil with infinite depth:-

If the depth of foundation Df = 0, H = ∞

The immediate settlement may be expressed as:

$$S_e = \frac{p B}{E_s} (1 - \mu_s^2) I$$

Where $p = \frac{Q}{BL}$ net stress E_s = Soil modulus of elasticity

Q = Applied load

 μ_s = Soil Poisson's ratio

B = Foundation width

I = Coefficient of shape and rigidity

Coefficient of shape and rigidity (I) for foundation on soil with infinite depth:-

C	oef. of shape ar			
Average	Perimeter of circle Mid of L	Corner	Center	Shape & Rigidity
0.85	0.64	1	1.00	Circle - Flexible
0.79	0.79		0.79	Circle - Rigid
0.95	0.76	0.56	1.12	Square - Flexible
0.82	0.82 0.82 0.82		0.82	Square - Rigid
		,		Rectangle - Flexible
1.30	1.12	0.76	1.53	L/B = 2
1.82	1.68	1.05	2.10	L/B = 5
2.24	2.1	1.28	2.56	L/B = 10
		Rectangle - Rigid		
1.12	1.12	1.12	1.12	L/B = 2
1.60	1.60	1.60	1.60	L/B = 5
2.00	2.00	2.00	2.00	L/B = 10

Foundation on soil "with depth = H":-

Flexible Foundation:

$$S_{e(aver)} = \frac{\sigma}{E_s} H$$

Rigid foundation:

$$S_e = \frac{p B}{E_s} I_c$$

Where:

 $I_c = Influence coefficient$ $p = \frac{Q}{BL}$ net stress

 σ = Stress at mid layer

Foundation on multi-layered soil:-

$$S_{e(aver)} = \sum \frac{\sigma}{E_s} h_z$$

Where:

- s = Stress at middle of each layer
- h_z= height of each layer

Immediate settlement of sandy soil:

Copyright[©] Dr. M. El-Meligy (2006)

According to the SIF method, the immediate settlement may be calculated as:-

$$S_{e} = C_{1} C_{2} (q_{o} - q) \sum_{0}^{z_{2}} \frac{I_{z}}{E_{s}} \Delta z$$

Where:

qo = Gross stress at foundation level

Iz = Strain influence factor

C1 = a correction factor for the depth of foundation

C1 = 1 - 0.5 [q/(qo - q)]

C2 = a correction factor to account for the creep in soil

 $C2 = 1 + 0.2 \log (10 \text{ time in years})$

• For Square or circular foundation:

The soil modulus of elasticity may be evaluated by using:

- The Standard Penetration Test (SPT)

Es (kN/m2) = 766 N

- The Static Cone Penetration Resistance

Es = 2.0 qc

Range of material parameters for computing elastic settlement:

Type of soil	E _s MN/m ²	μ _s	
Loose sand	10.35 - 24.15	0.2 - 0.4	
Medium dense sand	17.25 - 27.60	0.25 - 0.4	
Dense sand	34.50 - 55.20	0.3 - 0.45	
Silty sand	10.35 - 17.25	0.2 - 0.4	
Sand and gravel	69.00 -72.50	0.15 - 0.35	
Soft clay	4.10 - 20.70		
Medium clay	20.70 - 41.40	0.2 - 0.5	
Stiff clay	41.40 - 96.60		

• Example:

A soil profile consists of deep, loose to medium dense sand (gdry = 16 kN/m3, gsat = 18kN/m3). The ground water level is at 4 m depth. A 3.5m x 3.5m square footing rests at 3 m depth. The total (gross) load acting at the foundation level (footing weight + column load + weight of soil or footing) is 2000 kN. Estimate the settlement of the footing 6 years after the construction using the strain influence factor (SIF) method (Schmertman, 1978). End resistance values obtained from static cone penetration tests are;

Depth (m)	q _c (kN/m²)
0.00 – 2.00	8000
2.00 - 4.75	10000
4.75 - 6.50	8000
6.50 - 12.00	12000
12.00 - 15.00	10000

SETTLEMENT

 $q_{net} = \frac{20000}{3.5x3.5} - 3x16 = 115.26 \text{ kPa}$

gross pressure. initial effective overburden pressure

$$\sigma_0 = 3x16 = 48 \text{ kPa}$$

 $C_1 = 1 - 0.5 \frac{48}{115.26} = 0.792$
 $C_2 = 1 + 0.2 \log \frac{6}{0.1} = 1.356$

SETTLEMENT

Soil Mechanics

<u>Layer No</u>	Depth(m)	<u>Δz(m)</u>	<u>q_c(kPa)</u>	<u>Es(kPa)</u>	<u>I</u> z	<u>(Ι, /Ε,) Δz</u>
1	3.00-4.75	1.75	10000	20000	0.3	2.65x10 ⁻⁵
2	4.75-6.50	1.75	8000	16000	0.416	4.55x10 ⁻⁵
3	6.50-8.25	1.75	12000	24000	0.249	1.82x10 ⁻⁵
4	8.25-10.00	1.75	12000	24000	0.083	0.605x10 ⁻⁵
					Σ	$=9.625 \times 10^{-5}$

Si = (0.792) (1.356) (115.26) (9.625x10⁻⁵)

= 0.01191 m

→ Si = 11.91 mm

PRIMARY CONSOLIDATION SETTLEMENT:

Fundamental of consolidation:

When a saturated clay is loaded externally, The water is squeezed out of the clay over a long time (due to low permeability of the clay).

This leads to settlements occurring over a long time, which could be several years.

time

Granular soils are freely drained, and thus the settlement is instantaneous.

During consolidation

 $\Delta\sigma$ remains the same (=q) during consolidation.

 Δu decreases (due to drainage) while $\Delta \sigma'$

increases, transferring the load from water to the soil.

One Dimensional Consolidation:

- Drainage and deformations are vertical
- A simplification for solving consolidation problems

One Dimensional Consolidation Lab Test:

Schematic diagram of consolidation test arrangement

Copyright[©] Dr. M. El-Meligy (2006)

Time (log scale)

Time-Deformation Plot

Effective pressure, σ' (log scale)

g

Normally Consolidated & Overconsolidated Clays:

• Normally Consolidated

Existing vertical effective stresses are the highest the soil has ever experienced

→ "Young" deposits

Overconsolidated

Existing vertical effective stresses is less than a previous maximum

→ Glaciation, erosion, pre-loaded

Preconsolidation pressure $\sigma c'$

Graphical determination of $\sigma c'$:

Compression and swelling indices:

SETTLEMENT

SETTLEMENT CALCULATIONS:

If the clay is overconsolidated, and remains so by the end of consolidation,

consolidated by the end of consolidation,

42

TIME RATE OF CONSOLIDATION:

Average degree of consolidation:

Soil Mechanics

SETTLEMENT

SETTLEMENT

Soil Mechanics

Plot of time factor against average degree of consolidation

SECONDARY CONSOLIDATION SETTLEMENT:

Occurs at the end of primary consolidation

$$S_{s} = C_{\alpha}' H \log(\frac{t_{2}}{t_{1}})$$

Where:

$$C_{\alpha}' = \frac{C_{\alpha}}{1 + e_p}$$

ep = voids ratio at the end of primary consolidation

H = thickness of clay layer

t1 = time at the end of primary consolidation

t2 = time at which secondary consolidation is required

Secondary consolidation settlement is more important in organic clays and soft to very soft clays.

In overconsolidated inorganic clays the secondary compression index is very small and of less practical significance.

- Absolute settlement
- Differential settlement
- Angle of distortion

EXAMPLE:

Estimate the primary consolidation settlement for the foundation shown in Fig.

Using 2:1 approximate method at CL of clay layer

$$\Delta \sigma' = \frac{300}{(1+3.25)(2+3.25)} = 13.45 \text{ KN/m}^2$$
$$S_c = \frac{2.5x0.32}{1+0.8} \log \frac{52.84 + 13.45}{52.84} = 0.044 \text{ m}$$

APPLICATIONS

- Water level lowering
- New building adjacent to an existing one
- Basement
- Increasing number of floors over existing building
- Variable thickness of clay layer
- More than one clay layer

LATERAL EARTH PRESSURE

Outline:

- Introduction
- Earth pressure at rest
- Active earth pressure
- Passive earth pressure

Soil Mechanics

EARTH PRESSURE

Soil nailing

Cantilever wall

Sheet pile wall

Soil Mechanics

Earth Pressure at Rest:

The ratio σ_h'/σ_v' is a constant known as coefficient of earth pressure at rest (K_o).

At Ko state, there is no lateral strains.

For normally consolidated clays and granular soils,

$$K_o = 1 - \sin \phi$$

For overconsolidated clays,

 $K_{o,overconsolidated} = K_{o,normally consolidated} OCR^{0.5}$

From elastic analysis,

Active Earth Pressure:

$$\sigma_1 = \sigma_3 \tan^2 \left(45 + \frac{\phi}{2} \right) + 2 c \tan \left(45 + \frac{\phi}{2} \right)$$

Major principal stress $\sigma_1 = \sigma_v$ Minor principal stress $\sigma_3 = \sigma_a$ Thus,

$$\sigma_{v} = \sigma_{a} \tan^{2} \left(45 + \frac{\phi}{2} \right) + 2 c \tan \left(45 + \frac{\phi}{2} \right)$$

$$\sigma_{a} = \frac{\sigma_{v}}{\tan^{2} \left(45 + \frac{\phi}{2} \right)} - \frac{2 c}{\tan \left(45 + \frac{\phi}{2} \right)}$$

$$\sigma_{a} = \sigma_{v} \tan^{2} \left(45 - \frac{\phi}{2} \right) - 2 c \tan \left(45 - \frac{\phi}{2} \right)$$
Rankine active earth pressure coefficient, K_a

$$\overline{\sigma_{a}} = \sigma_{v} K_{a} - 2 c \sqrt{K_{a}} \qquad \text{RANKINE ACTIVE EARTH PRESSURE}$$

Rankine active pressure diagram for clay backfill behind retaining structure

EARTH PRESSURE

$$\sigma_1 = \sigma_3 \tan^2 \left(45 + \frac{\phi}{2} \right) + 2 c \tan \left(45 + \frac{\phi}{2} \right)$$

Major principal stress $\sigma_1 = \sigma_p$ Minor principal stress $\sigma_3 = \sigma_v$

Thus,

$$\sigma_{p} = \sigma_{v} \tan^{2} \left(45 + \frac{\phi}{2} \right) + 2 c \tan \left(45 + \frac{\phi}{2} \right)$$
Rankine passive earth pressure coefficient, K_p

$$\sigma_{p} = \sigma_{v} K_{p} + 2 c \sqrt{K_{p}}$$
PASSIVE EARTH PRESSURE
$$+ 2 c \sqrt{K_{p}} \rightarrow + 2 c \sqrt{K_{p}}$$

$$\sigma_{p} = \sigma_{v} K_{p} + 2 c \sqrt{K_{p}}$$

$$\sigma_{p} = \sigma_{v} K_{p} + 2 c \sqrt{K_{p}}$$

$$\sigma_{v} = \gamma z$$
Earth pressure diagram

Case of inclined retaining structure:

Rankine active earth pressure for inclined granular backfill

Active & passive earth pressure due to surcharge:

EXAMPLE:

For the retaining wall shown, assume that the wall can yield sufficiently to develop active state. Draw the pressures diagrams and determine the active force per unit length of the wall as well as the location of the resultant line of action.

$$K_{a(1)} = \tan^{2}(45-15) = 0.333$$

$$K_{a(2)} = \tan^{2}(45-18) = 0.26$$
At z = 3 m
$$\sigma'_{v} = 16 x 3 = 48 k N / m^{2}$$

$$\sigma'_{a-} = 0.333 x 48 = 16 k N / m^{2}$$

$$\sigma'_{a+} = 0.26 x 48 = 12.48 k N / m^{2}$$

$$\sigma_{v} = 16 x 3 + (19 - 9.81)(3) = 75.57 kN/m^{2}$$

$$\sigma_{a} = 0.26 x 75.57 = 19.65 kN/m^{2}$$

SOIL INVESTIGATION

SOIL INVESTIGATION

PURPOSE OF SOIL INVESTIGATION:

- 1. Selecting the type and depth of foundation
- 2. Evaluating the load-bearing Capacity of the foundation
- 3. Estimating the expected settlement
- 4. Determining the location of the water table
- 5. Predicting lateral earth pressure
- 6. Establishing construction methods

SOIL INVESTIGATION PROGRAM:

- Collection of preliminary Information
- Visual inspection
- Site Investigation

Collection of preliminary information:

- Information regarding type of structure
- For buildings, approximate columns loads and spacing, basement requirements are required.
- For bridges, approximate span lengths loads on piers and abutments are required.
- General idea about of soil around the proposed site.

Visual inspection:

Visual inspection of the site is required to obtain the following data:

- 1. General topography of the site.
- 2. Soil stratification from deep cuts.
- 3. Type of vegetation.
- 4. Ground water levels.
- 5. Reported problems in nearby buildings.

Site investigation:

- Planning
- Making test boreholes
- Collecting soil samples

PLANNING:

The following tables:-

SOIL INVESTIGATION

تخطيط الجسات	مناطق البحث
تخطط الجسات الإسترشادية على شبكة من ٢٠٠×٢٠٠ متراً إلى ٤٠٠×٤٠٠ متراً	المواقع العمرانية
وفي حالة الأبحاث التفصيلية يزداد عدد الجسات للحصول على قطاعات جيولوجية	
دقيقة .	
يتم إختيار الجسات بصفة عامة بواقع جسة لكل ٣٠٠ مترمربع ، ولا يقل عددها عن	مواقع للبناء المعتادة
جستين في حالة ما يكون المسطح من ١٠٠ متر إلى ٣٠٠ متر مربع . أما في حالة	
المبانى التي يقل مسطحها عن ١٠٠ متر مربع كغرف الحراسة وغرف المولدات	
الكهربائية فيكتفى بعمل جسة واحدة مع الاسترشاد بالجسات المجاورة إذا أمكن ذلك ،	
وإلا فيتم عمل جستين على الأقل .	
وفى حالة الدنشأت ذات المسطحات الكبيرة يتحدد عدد الجسات بواقع جسة لكل من	
٣٠٠ متراً مربع إلى ٥٠٠ متراً مربعاً ، وذلك حسب المعلومات المتوفرة عن	
تكوينات التربة في المنطقة .	
وفى حالة المنشأت الموزعة على مسطحات كبيرة مثل القرى السياحية أو ماشابه	
فيتوقف عدد الجسات على المسافة بين المنشأت المختلفة وحجم هذه المنشأت مع	
الإسترشاد بما تقدم.	
يتم إختيار الجسات بحيث تكون المسافة بينها في حدود من ٥٠ متراً إلى ٢٠٠ منراً.	السدود وخزانات المياه
وتقل المسافة بين الجسات عن منطقة منتصف المنشأ لتصبح حوالى ٣٠ مترأ في حالة	وللترع والجسور
السدود أو المناطق الأكثر تحميلاً من الناحية الإستاتيكية . وفي جميع الأحوال يتوقف	والحوائط الساندة
عدد الجسات على طول المنشأ ونوعية طبقات التربة المتوقعة.	
يتم عمل جسة كل ٢٥٠ متراً في الأراضي الزراعية، وجسة كل ١٥٠ متراً أو أقل	خطوط المياه والصرف
في الأراضى الصحراوية، وجسة في كل من أماكن غرف المحابس وغرف التفتيش	الصحى
والمطابق.	1
يتم عمل جسة أو إثنين بموقع كل برج ويعتمد ذلك على مساحة الأساس المتوقع	خطوط كهرباء الضغط
للبرج .وفي حالة الأبراج ذات الشد فتعمل جسة في موقع الشداد إذا لزم الأمر .	العالمي وأبراج
	الاتصالات
يتم إختيار الجسات بحيث تكون المسافة بينها في حدود من ١٠ إلى٢٠ متراً طبقاً	أكتاف الكبارى
لتجانس طبقات التربة وبعدد لايقل عن جستين بموقع كل كنف .	
يتم إختيار الجسات بحيث تكون المسافة ببنها في حدود من ١٠ إلى٢٠ متراً طبقاً	الخزانات الأرضية
لتجانس طبقات التربة .	ذات الأبعاد الكبيرة

جدول (۱-۱۳) متطلبات تحديد عدد الجسات بالمواقع المختلفة

المختلفة	بالمواقع	الجسات	أعماق	متطلبات تحديد	(1=1)	جدول رقم
----------	----------	--------	-------	---------------	-------	----------

أعماق الجسات	مناطق البحث
يتم عمل الجسات بعمق لايقل عن ١٠,٠٠ متراً كما يتم عمل حفر إستكشافية	المواقع العمرانية
مفتوحة بأعماق لاتقل عن ٥,٠٠ متراً ما أمكن للحصول على عينات في حالتها	
الطبيعية ، ويعمل جسات عميقة بواقع ١٠% من عدد الجسات المطلوبة .	
في جميع الأحوال لاتقل أعماق الجسات عن ١٠,٠٠ امتراً. وتزاد أعماق الجسات	مواقع البناء المعتادة
طبقاً لطبيعة التربة بالموقع وطبيعة المنشأ وأحماله . وفي حالة الأساسات العميقة	
(مثل الخوازيق) يجب أن يصل عمق الجسات إلى ٥,٠٠ متراً على الأقل عن	
النهاية المتوقعة لإرتكاز الخوازيق.	
يجب أن لاتقل أعماق الجسات عن مرتين الإرتفاع الحر للحائط مقاساً من منسوب	السدود وخزانات
الأرض أمام الحائط .	المياه والترع
وفى حالة الجسور لاتقل عمق الجسة عن مرة ونصف العرض الكامل لقطاع	والجسور والحوائط
الجسر خلال الطبقات المتجانسة ، مع زيادة هذا العمق في حالة ظهور طبقات.	المساندة
ضعيفة . كما يجب أن تصل أعماق الجسات إلى عمق أكبر من عمق مستوى	
سطح الإنهيار المحتمل في حالة دراسة الميول، أو أن تصل الجسات إلى عمق	
كافي للوصول للطبقات الصلبة .	
لايقل عمق الجسة عن ٥ متر وبحيث يكون عمق الجسة أسفل الراسم السفلى	خطوط المياه
للماسورة بقدر ٦ مرات قطر الماسورة أو ٣ متر أيهما أكبر. وفي حالة الأعمال	والصرف
الصناعية على الخط لايقل عمق الجسة عن ١٠ متراً.	
V بقال صف الدينة عن 10 متراً من حالة أبراح الثير مالأبراح ذات استفاع	خطوط كهرباء
م يعن عملي الجنبة عن 10 مترا. وفي تحاله الراج الطف والابراج دات إرتعاع أكد مذ دولا متدأ دكد: موتر المسترة مالا متدأ مل الأقل	الضنغط العالى
الدير من ٢٠٠ مارا يدون عمق الجسه ٢٠ مارا على الافل .	وأبراج الاتصالات
لايقل عمق الجسات عن ١٠,٠٠ متراً وتزاد أعماق الجسات طبقاً لطبيعة التربة .	أكتاف الكبارى
يتم عمل الجسات بأعماق كبيرة خاصة في حالة وجود التربة اللينة أو الرخوة .	الخزانات الأرضية
وعلى كل حال فيتم عمل ٢٠% من عدد الجسات على الأقل أو جستين بعمق	ذات الأبعاد الكنبيرة
لايقل عن قطر الخزان أو البعد الأصغر للخزانات المستطيلة.	
SOIL INVESTIGATION

Boring Types:

- Auger boring
- Continuous flight auger
- Wash boring
- Rotary drilling

Hand Auger

Auger Drilling

Rotary wash boring

Rotary wash boring

SOIL INVESTIGATION

Solid Augers

SOIL INVESTIGATION

Hollow stem augers

SOIL INVESTIGATION

Rotary wash borings

Bucket auger borings

SOIL SAMPLING:

Three types of soil samples:

• Disturbed samples

- Bulk samples (from auger cuttings or test pit excavations)
- Drive samples (e.g., split-barrel)

• Partially undisturbed

Continuous Hydraulic Push

• Undisturbed samples

- Push Tubes (Shelby, Piston, Laval, Sherbrook)
- Rotary & Push (Denison, Pitcher)
- ♦ Block Samples

SAMPLER TYPES:

- Split-Spoon Sampling
- Scraper Bucket
- Thin Wall Tube
- Piston Sampler

Split-Spoon Soil Sampler

Schematic diagram of thethin-wall tube sampler

Diagram of the sampling operation using the thin-wall tube sampler

Typical components of a hollow-stem auger

Isometric drawing of the hollow-stem auger with the center drag bit which can be used with soil sampling

Schematic drawing of the Bishop sand sampler

Schematic diagram illustrating the operation of the Bishop sand sampler

OBSERVATION OF WATER TABLES:

- The water levels in a borehole during field exploration should be recorded.
- In soils with high hydraulic conductivity, the water level in a borehole will stabilize about 24 hrs after completion of the boring.
- The depth of the water table can be recorded by lowering a chain or a tape into the borehole.
- In highly impermeable layers, the water level in a borehole requires longer time to stabilize, hence a piezometer is used for accurate measurement of water level.

Field Testing:

- Standard Penetration Test
- Vane Shear Test
- Cone Penetration Test
- Pressuremeter Test
- Dilatometer Test

Standard Peneteration Test (SPT):

- General equipment and procedure
- Corrections
- Correlation between SPT and soil properties

Split-Spoon Sampler

Correlation between Spt and Soil Properties:

- Relative density
- Effective stress friction angle
- Undrained shear strength

CORRELATIONS

Meyerhoff (1956)

State of Packing	Relative Density	Standard Penetration Resistance (N)	Static Cone Resistance (q _c)	Angle of Internal Friction (¢')		
	Percent	Blows / ft	Tsf or kgf/cm ²	Degrees		
Very Loose Loose Compact Dense Very Dense	< 20 20 - 40 40 - 60 60 - 80 > 80	< 4 4 –10 10 –30 30 – 50 > 50	< 20 20 - 40 40 - 120 120 - 200 > 200	< 30 30 – 35 35 – 40 40 – 45 > 45		

Relative Density

Effective Stress Friction Angle

CORRELATIONS

Undrained Shear Strength

Soil Consistency	SPT N	S _u (psf)	S _u (kPa)
Very Soft	< 4	< 250	< 12
Soft	2 – 4	250 – 500	12 – 25
Medium	4 - 8	500 – 1000	25 – 50
Stiff	8 – 15	1000 – 2000	50 – 100
Very Stiff	15 – 30	2000 – 4000	100 – 200
Hard	> 30	> 4000	> 200

Terzaghi et al. (1996)

CORING OF ROCKS:

Rock core-drill set-up

Diagram of two-types of core barrels

(a) Single tube (b) Double tube

STRATIFICATION:

Preparation Of Boring Logs:

The data gathered from each borehole is presented in the so called *boring log*. The driller should include the following data in the site:

- 1. Drilling company.
- 2. Number and type of boring.
- 3. Date of boring.
- 4. Subsurface stratification by visual observation.
- 5. Water levels.
- 6. SPT results.
- 7. Number, type, and depth of samples.

After completion of lab tests, the geotechnical engineer prepare the final log that include the data from the driller field log and test results.

Subsoil ExploIration Report:

- After all the required information has been compiled, a soil exploration report is prepared.
- Each report should include the following items:
- 1. The scope of the investigation.
- 2. A description of the proposed structure.
- 3. A description of the location of the site.
- 4. Geological setting of the site.
- 5. Details of the field exploration.

- 6. General description of the subsoil condition.
- 7. Water-table conditions.
- 8. Foundation recommendations.
- 9. Conclusions and limitations of the investigation.
- Some graphs should be attached to the to the report as:
- 1. Site location map.
- 2. A plan view of the locations of the borings.
- 3. Boring logs.
- 4. Laboratory test results.

شكل (١-٣) توضيح أنواع العينات وأنواع التهشير في قطاع الجسات

SOIL INVESTIGATION

Soil Mechanics

	جسة رقم: ملف رقم :								مشروع :						
تاريخ تاريخ			تاريخ تاريخ		الابتدائى : النماغى	1	ق المياه الارضيا	ae	منسوب سطح الارض :						
				الحفار:			هندس الموقع :	•		:	مل	ما الم	ندس	-	
من					لوحة رقم			معدات :	Л				:	ريخ	ե
الكثافة المليسية كيلونيوتن/م	نىبة الاستغلامن (28 مەسىم)	معامل جودة المنز (1933) X	النفط الفير سماط ميجانيوتن/م	يف والتوصيف						يم القطاع	کا السمك وترا		ينة نوع	عد رقم	العمق (متراً)
				-	ردم مکون من رمل وطمی وزلط متدرج - بنی						1,1.		X	١	_
					للزلط الدقيق-أصغر	کثافة مع بعفر	متوسط الاً	س كبير الحبيبات	رمل متوسط ال	° 0 0 0	1,v .	r.		r r	1 1
۲۱	٤.	۱.	11,0										X	٤	٤
***	00	10		کسير	ل رقيقة عالى الت	. التجوية ـ كت	. متوسط فر	توسط الملابة ۔ ييات - بنۍ مص	حجر رمان م متوسط الحا		r ,ı.		X	٥	٥
۲.	٤0	10	11,.											۲ v	-1
17	٤.	10	18,0											٨	<u>×</u>
**	٥٥	۳.		- 4	ة ـ متوسط التجويا	عيف الجودة	بة - ضا	، متوسط الصلا فر	حجر جير، أبيض مص		0,0		X	١	4
11	٦. ٧.	50	۲.,.							E E			X	۱.	1.
177	10	00	۳.,						2 1				X	"	<u>.</u> ,
77	70	٤.					- 15	ة وار ورت	نداية الم	F			×	۱۳	<u>_</u> !r
						C.	۱۲٫۰۰ مدر	له على عمق	مەت بىخە						14
															18
						10115	3 -1	1.11					tr	4	-

SOIL INVESTIGATION

Soil Mechanics

