
Oracle Forms Developer 10g:
Build Internet Applications

Instructor Guide • Volume 2

D17251GC10

Edition 1.0

June 2004

D39560

®

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065. Oracle
Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Author

Pam Gamer

Technical Contributors
and Reviewers

Alena Bugarova
Purjanti Chang
Laurent Dereac
Punita Handa
Mark Pare
Jasmin Robayo
Bryan Roberts
Divya Sandeep
Raza Siddiqui
John Soltani
Lex van der Werff

Editors

Nishima Sachdeva
Elizabeth Treacy

Publisher

Giri Venugopal

Preface

I Introduction
Objectives I-2
Course Objectives I-3
Course Content I-5

1 Introduction to Oracle Forms Developer and Oracle Forms Services
Objectives 1-2
Internet Computing Solutions 1-3
Plugging into the Grid 1-4
Oracle Enterprise Grid Computing 1-5
Oracle 10g Products and Forms Development 1-7
Oracle Application Server 10g Architecture 1-8
Oracle Application Server 10g Components 1-9
Oracle Forms Services Overview 1-10
Forms Services Architecture 1-11
Benefits and Components of Oracle Developer Suite 10g 1-12
Oracle Developer Suite 10g Application Development 1-13
Oracle Developer Suite 10g Business Intelligence 1-14
Oracle Forms Developer Overview 1-15
Oracle Forms Developer: Key Features 1-16
Summit Office Supply Schema 1-17
Summit Application 1-18
Summary 1-20

2 Running a Forms Developer Application
Objectives 2-2
Testing a Form: OC4J Overview 2-3
Testing a Form: Starting OC4J 2-4
Running a Form 2-5
Running a Form: Browser 2-6
The Java Runtime Environment 2-7
Starting a Run-Time Session 2-8
The Forms Servlet 2-11
The Forms Client 2-12
The Forms Listener Servlet 2-13
The Runtime Engine 2-14
What You See at Run Time 2-15
Identifying the Data Elements 2-17
Navigating a Forms Developer Application 2-18
Modes of Operation: Enter-Query Mode 2-20
Modes of Operation: Normal Mode 2-21
Retrieving Data 2-22
Retrieving Restricted Data 2-23
Query/Where Dialog Box 2-25
Inserting, Updating, and Deleting 2-27

Contents

iii

Making Changes Permanent 2-29
Displaying Errors 2-30
Summary 2-31
Practice 2 Overview 2-34

3 Working in the Forms Developer Environment
Objectives 3-2
Forms Builder Key Features 3-3
Forms Builder Components: Object Navigator 3-4
Forms Builder Components: Property Palette 3-5
Forms Builder Components: Layout Editor 3-6
Forms Builder Components: PL/SQL Editor 3-7
Getting Started in the Forms Builder Interface 3-8
Forms Builder: Menu Structure 3-10
Blocks, Items, and Canvases 3-12
Navigation in a Block 3-14
Data Blocks 3-15
Forms and Data Blocks 3-17
Form Module Hierarchy 3-19
Customizing Your Forms Builder Session 3-21
Saving Preferences 3-23
Using the Online Help System 3-24
Forms Developer Executables 3-25
Forms Developer Module Types 3-27
Defining Forms Environment Variables for Run Time 3-29
Defining Forms Environment Variables for Design Time 3-30
Environment Variables and Y2K Compliance 3-32
Forms Files to Define Run-Time Environment Variables 3-34
Testing a Form: The Run Form Button 3-35
Summary 3-37
Practice 3 Overview 3-39

4 Creating a Basic Form Module
Objectives 4-2
Creating a New Form Module 4-3
Form Module Properties 4-6
Creating a New Data Block 4-8
Navigating the Wizards 4-10
Launching the Data Block Wizard 4-11
Data Block Wizard: Type Page 4-12
Data Block Wizard: Table Page 4-13

iv

Data Block Wizard: Finish Page 4-14
Layout Wizard: Items Page 4-15
Layout Wizard: Style Page 4-16
Layout Wizard: Rows Page 4-17
Data Block Functionality 4-18
Template Forms 4-19
Saving a Form Module 4-20
Compiling a Form Module 4-21
Module Types and Storage Formats 4-22
Deploying a Form Module 4-24
Text Files and Documentation 4-25
Summary 4-26
Practice 4 Overview 4-27

5 Creating a Master-Detail Form
Objectives 5-2
Form Block Relationships 5-3
Data Block Wizard: Master-Detail Page 5-5
Relation Object 5-7
Creating a Relation Manually 5-8
Join Condition 5-9
Deletion Properties 5-10
Modifying a Relation 5-11
Coordination Properties 5-12
Running a Master-Detail Form Module 5-13
Modifying the Structure of a Data Block 5-14
Modifying the Layout of a Data Block 5-15
Summary 5-17
Practice 5 Overview 5-18

6 Working with Data Blocks and Frames
Objectives 6-2
Managing Object Properties 6-3
Displaying the Property Palette 6-4
Property Palette: Features 6-5
Property Controls 6-6
Visual Attributes 6-8
How to Use Visual Attributes 6-9
Font, Pattern, and Color Pickers 6-10
Controlling Data Block Behavior and Appearance 6-11
Navigation Properties 6-12

v

Records Properties 6-13
Database Properties 6-15
Scroll Bar Properties 6-18
Controlling Frame Properties 6-19
Displaying Multiple Property Palettes 6-21
Setting Properties on Multiple Objects 6-22
Copying Properties 6-24
Creating a Control Block 6-26
Deleting a Data Block 6-27
Summary 6-28
Practice 6 Overview 6-29

7 Working with Text Items
Objectives 7-2
Text Item Overview 7-3
Creating a Text Item 7-4
Modifying the Appearance of a Text Item: General and Physical Properties 7-6
Modifying the Appearance of a Text Item: Records Properties 7-7
Modifying the Appearance of a Text Item: Font and Color Properties 7-8
Modifying the Appearance of a Text Item: Prompts 7-9
Associating Text with an Item Prompt 7-10
Controlling the Data of a Text Item 7-11
Controlling the Data of a Text Item: Format 7-12
Controlling the Data of a Text Item: Values 7-13
Controlling the Data of a Text Item: Copy Value from Item 7-15
Controlling the Data of a Text Item: Synchronize with Item 7-16
Altering Navigational Behavior of Text Items 7-17
Enhancing the Relationship Between Text Item and Database 7-18
Adding Functionality to a Text Item 7-19
Adding Functionality to a Text Item: Conceal Data Property 7-20
Adding Functionality to a Text Item: Keyboard Navigable and Enabled 7-21
Adding Functionality to a Text Item: Multi-line Text Items 7-22
Displaying Helpful Messages: Help Properties 7-23
Summary 7-24
Practice 7 Overview 7-26

8 Creating LOVs and Editors
Objectives 8-2
Overview of LOVs and Editors 8-3
LOVs and Record Groups 8-6
Creating an LOV Manually 8-8

vi

Creating an LOV with the LOV Wizard: SQL Query Page 8-9
Creating an LOV with the LOV Wizard: Column Selection Page 8-10
Creating an LOV with the LOV Wizard: Column Properties Page 8-11
Creating an LOV with the LOV Wizard: Display Page 8-12
Creating an LOV with the LOV Wizard: Advanced Properties Page 8-13
Creating an LOV with the LOV Wizard: Assign to Item Page 8-14
LOV Properties 8-15
Setting LOV Properties 8-16
LOVs: Column Mapping 8-17
Defining an Editor 8-19
Setting Editor Properties 8-20
Associating an Editor with a Text Item 8-21
Summary 8-22
Practice 8 Overview 8-23

9 Creating Additional Input Items
Objectives 9-2
Input Items Overview 9-3
Check Boxes Overview 9-4
Creating a Check Box 9-5
Converting an Existing Item into a Check Box 9-6
Creating a Check Box in the Layout Editor 9-7
Setting Check Box Properties 9-8
Check Box Mapping of Other Values 9-10
List Items Overview 9-11
Creating a List Item 9-13
Converting an Existing Item into a List Item 9-14
Creating a List Item in the Layout Editor 9-15
Setting List Item Properties 9-16
List Item Mapping of Other Values 9-17
Radio Groups Overview 9-18
Creating a Radio Group 9-19
Converting Existing Item to Radio Group 9-20
Creating Radio Group in Layout Editor 9-21
Setting Radio Properties 9-22
Radio Group Mapping of Other Values 9-23
Summary 9-24
Practice 9 Overview 9-25

10 Creating Noninput Items
Objectives 10-2
Noninput Items Overview 10-3

vii

Display Items 10-4
Creating a Display Item 10-5
Image Items 10-6
Image File Formats 10-8
Creating an Image Item 10-9
Setting Image-Specific Item Properties 10-10
Push Buttons 10-12
Push Button Actions 10-13
Creating a Push Button 10-14
Setting Push Button Properties 10-15
Calculated Items 10-16
Creating a Calculated Item by Setting Properties 10-17
Setting Item Properties for the Calculated Item 10-18
Summary Functions 10-19
Calculated Item Based on a Formula 10-20
Rules for Calculated Item Formulas 10-21
Calculated Item Based on a Summary 10-22
Rules for Summary Items 10-23
Creating a Hierarchical Tree Item 10-24
Setting Hierarchical Tree Item Properties 10-25
Bean Area Items 10-26
Creating a Bean Area Item 10-27
Setting Bean Area Item Properties 10-28
The JavaBean at Run Time 10-29
Summary 10-30
Practice 10 Overview 10-32

11 Creating Windows and Content Canvases
Objectives 11-2
Windows and Canvases 11-3
Window, Canvas, and Viewport 11-4
The Content Canvas 11-5
Relationship Between Windows and Content Canvases 11-6
The Default Window 11-7
Displaying a Form Module in Multiple Windows 11-8
Creating a New Window 11-9
Setting Window Properties 11-10
GUI Hints 11-11
Displaying a Form Module on Multiple Layouts 11-12
Creating a New Content Canvas 11-13
Setting Content Canvas Properties 11-15

viii

Summary 11-16
Practice 11 Overview 11-17

12 Working with Other Canvas Types
Objectives 12-2
Overview of Canvas Types 12-3
The Stacked Canvas 12-4
Creating a Stacked Canvas 12-6
Setting Stacked Canvas Properties 12-8
The Toolbar Canvas 12-9
The MDI Toolbar 12-10
Creating a Toolbar Canvas 12-11
Setting Toolbar Properties 12-12
The Tab Canvas 12-13
Creating a Tab Canvas 12-14
Creating a Tab Canvas in the Object Navigator 12-15
Creating a Tab Canvas in the Layout Editor 12-16
Setting Tab Canvas, Tab Page, and Item Properties 12-17
Placing Items on a Tab Canvas 12-18
Summary 12-19
Practice 12 Overview 12-21

13 Introduction to Triggers
Objectives 13-2
Trigger Overview 13-3
Grouping Triggers into Categories 13-4
Defining Trigger Components 13-6
Trigger Type 13-7
Trigger Code 13-9
Trigger Scope 13-10
Specifying Execution Hierarchy 13-12
Summary 13-14

14 Producing Triggers
Objectives 14-2
Creating Triggers in Forms Builder 14-3
Creating a Trigger 14-4
Setting Trigger Properties 14-7
PL/SQL Editor Features 14-8
The Database Trigger Editor 14-10
Writing Trigger Code 14-11

ix

Using Variables in Triggers 14-13
Forms Builder Variables 14-14
Adding Functionality with Built-In Subprograms 14-16
Limits of Use 14-18
Using Built-In Definitions 14-19
Useful Built-Ins 14-21
Using Triggers: When-Button-Pressed Trigger 14-23
Using Triggers: When-Window-Closed Trigger 14-24
Summary 14-25
Practice 14 Overview 14-27

15 Debugging Triggers
Objectives 15-2
The Debugging Process 15-3
The Debug Console 15-4
The Debug Console: Stack Panel 15-5
The Debug Console: Variables Panel 15-6
The Debug Console: Watch Panel 15-7
The Debug Console: Form Values Panel 15-8
The Debug Console: PL/SQL Packages Panel 15-9
The Debug Console: Global/System Variables Panel 15-10
The Debug Console: Breakpoints Panel 15-11
The Debug Console 15-12
Setting Breakpoints in Client Code 15-13
Setting Breakpoints in Stored Code 15-14
Debugging Tips 15-15
Running a Form in Debug Mode 15-16
Stepping Through Code 15-17
Debug Example 15-18
Summary 15-20
Practice 15 Overview 15-21

16 Adding Functionality to Items
Objectives 16-2
Item Interaction Triggers 16-3
Coding Item Interaction Triggers 16-5
Interacting with Check Boxes 16-7
Changing List Items at Run Time 16-8
Displaying LOVs from Buttons 16-9
LOVs and Buttons 16-11
Populating Image Items 16-13

x

Loading the Right Image 16-15
Populating Hierarchical Trees 16-16
Displaying Hierarchical Trees 16-18
Interacting with JavaBeans 16-19
Summary 16-25
Practice 16 Overview 16-27

17 Run Time Messages and Alerts
Objectives 17-2
Run-Time Messages and Alerts Overview 17-3
Detecting Run-Time Errors 17-5
Errors and Built-Ins 17-7
Message Severity Levels 17-9
Suppressing Messages 17-11
The FORM_TRIGGER_FAILURE Exception 17-13
Triggers for Intercepting System Messages 17-15
Handling Informative Messages 17-17
Setting Alert Properties 17-19
Planning Alerts 17-21
Controlling Alerts 17-22
SHOW_ALERT Function 17-24
Directing Errors to an Alert 17-26
Causes of Oracle Server Errors 17-27
Trapping Server Errors 17-29
Summary 17-30
Practice 17 Overview 17-33

18 Query Triggers
Objectives 18-2
Query Processing Overview 18-3
SELECT Statements Issued During Query Processing 18-5
WHERE Clause 18-7
ONETIME_WHERE Property 18-8
ORDER BY Clause 18-9
Writing Query Triggers: Pre-Query Trigger 18-10
Writing Query Triggers: Post-Query Trigger 18-11
Writing Query Triggers: Using SELECT Statements in Triggers 18-12
Query Array Processing 18-13
Coding Triggers for Enter-Query Mode 18-15
Overriding Default Query Processing 18-19
Obtaining Query Information at Run Time 18-22

xi

Summary 18-25
Practice 18 Overview 18-27

19 Validation
Objectives 19-2
The Validation Process 19-3
Controlling Validation Using Properties: Validation Unit 19-5
Controlling Validation Using Properties: Validate from List 19-7
Controlling Validation Using Triggers 19-9
Example: Validating User Input 19-11
Using Client-Side Validation 19-13
Tracking Validation Status 19-16
Controlling When Validation Occurs with Built-Ins 19-18
Summary 19-20
Practice 19 Overview 19-22

20 Navigation
Objectives 20-2
Navigation Overview 20-3
Understanding Internal Navigation 20-5
Using Object Properties to Control Navigation 20-7
Mouse Navigate Property 20-9
Writing Navigation Triggers 20-10
Navigation Triggers 20-11
When-New-<object>-Instance Triggers 20-12
SET_<object>_PROPERTY Examples 20-13
The Pre- and Post-Triggers 20-15
Post-Block Trigger Example 20-17
The Navigation Trap 20-18
Using Navigation Built-Ins in Triggers 20-19
Summary 20-21
Practice 20 Overview 20-23

21 Transaction Processing
Objectives 21-2
Transaction Processing Overview 21-3
The Commit Sequence of Events 21-6
Characteristics of Commit Triggers 21-8
Common Uses for Commit Triggers 21-10
Life of an Update 21-12
Delete Validation 21-14

xii

Assigning Sequence Numbers 21-16
Keeping an Audit Trail 21-18
Testing the Results of Trigger DML 21-19
DML Statements Issued During Commit Processing 21-21
Overriding Default Transaction Processing 21-23
Running Against Data Sources Other than Oracle 21-25
Getting and Setting the Commit Status 21-27
Array DML 21-31
Effect of Array DML on Transactional Triggers 21-32
Implementing Array DML 21-33
Summary 21-34
Practice 21 Overview 21-38

22 Writing Flexible Code
Objectives 22-2
What Is Flexible Code? 22-3
Using System Variables for Current Context 22-4
System Status Variables 22-6
GET_<object>_PROPERTY Built-Ins 22-7
SET_<object>_PROPERTY Built-Ins 22-9
Referencing Objects by Internal ID 22-11
FIND_ Built-Ins 22-12
Using Object IDs 22-13
Increasing the Scope of Object IDs 22-15
Referencing Objects Indirectly 22-17
Summary 22-20
Practice 22 Overview 22-22

23 Sharing Objects and Code
Objectives 23-2
Benefits of Reusing Objects and Code 23-3
What Are Property Classes? 23-5
Creating a Property Class 23-6
Inheriting from a Property Class 23-8
What Are Object Groups? 23-10
Creating and Using Object Groups 23-11
Copying and Subclassing Objects and Code 23-13
Subclassing 23-14
What Are Object Libraries? 23-16
Benefits of the Object Library 23-18
Working with Object Libraries 23-19

xiii

What Is a SmartClass? 23-20
Working with SmartClasses 23-21
Reusing PL/SQL 23-22
What Are PL/SQL Libraries? 23-24
Writing Code for Libraries 23-25
Creating Library Program Units 23-26
Attach Library Dialog Box 23-27
Calls and Searches 23-28
Summary 23-30
Practice 23 Overview 23-32

24 Using WebUtil to Interact with the Client
Objectives 24-2
WebUtil Overview 24-3
Benefits of the WebUtil Utility 24-4
Integrating WebUtil into a Form 24-11
When to Use WebUtil Functionality 24-13
Interacting with the Client 24-14
Example: Opening a File Dialog on the Client 24-15
Example: Reading an Image File into Forms from the Client 24-16
Example: Writing Text Files on the Client 24-17
Example: Executing Operating System Commands on the Client 24-18
Example: Performing OLE Automation on the Client 24-19
Example: Obtaining Environment Information about the Client 24-22
Summary 24-23
Practice 24 Overview 24-24

25 Introducing Multiple Form Applications
Objectives 25-2
Multiple Form Applications Overview 25-3
Multiple Form Session 25-4
Benefits of Multiple Form Applications 25-5
Starting Another Form Module 25-6
Defining Multiple Form Functionality 25-8
Conditional Opening 25-10
Closing the Session 25-11
Closing a Form with EXIT_FORM 25-12
Other Useful Triggers 25-13
Sharing Data Among Modules 25-15
Linking by Global Variables 25-16
Global Variables: Opening Another Form 25-17
Global Variables: Restricted Query at Startup 25-18

xiv

Assigning Global Variables in the Opened Form 25-19
Linking by Parameter Lists 25-20
Linking by Global Record Groups 25-23
Linking by Shared PL/SQL Variables 25-24
Summary 25-26
Practice 25 Overview 25-28

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Introduction to Query Builder

Appendix D: Locking in Forms

Appendix E: Oracle Object Features

Appendix F: Using the Layout Editor

xv

Preface

Oracle Forms Developer 10g: Build Internet Applications Preface - 2

Oracle Forms Developer 10g: Build Internet Applications Preface - 3

Profile

Before you begin this course
Before you begin this course, you should be able to:

• Create SQL statements.
• Create PL/SQL constructs, including conditional statements, loops, procedures and functions.
• Create PL/SQL stored (server) procedures, functions, and packages.
• Use a graphical user interface (GUI).
• Use a Web browser.

Prerequisites
Either

• Oracle Database 10g: SQL Fundamentals I
• or the following CBT Library:

– Oracle SQL: Basic SELECT statements
– Oracle SQL: Data Retrieval Techniques
– Oracle SQL: DML and DDL

• or Introduction to Oracle Database 10g for Experienced SQL Users (InClass)
• or Oracle Database 10g: Introduction to SQL (InClass)

And either
• Oracle Database 10g: Program with PL/SQL (InClass)
• or the following CBT Library:

– PL/SQL: Basics
– PL/SQL: Procedures, Functions, and Packages
– PL/SQL: Database Programming

• Or both:
– Oracle Database 10g: PL/SQL Fundamentals (InClass)
– Oracle Database 10g: Develop PL/SQL Program Units (InClass)

Suggested prerequisites
• Oracle Database 10g: SQL Fundamentals II (InClass) (if you attended the Oracle Database 10g:

SQL Fundamentals I (InClass))
• Oracle Database 10g: Advanced PL/SQL (InClass)
• Oracle Forms Developer 10g: Move to the Web (eStudy)

How this course is organized
Oracle Forms Developer 10g: Build Internet Applications is an instructor-led course featuring lecture
and hands-on exercises. Online demonstrations and written practice sessions reinforce the concepts and
skills introduced.

Oracle Forms Developer 10g: Build Internet Applications Preface - 4

Related Publications

Oracle publications
Title Part Number
Oracle Forms Developer, Release 6i:

Getting Started (Windows 95/NT) A73154-01
Oracle Forms Developer and Reports Developer, Release 6i:
Guidelines for Building Applications A73073-02
Oracle Application Server Forms Services Deployment Guide B10470-01
10g (9.0.4)

Additional publications
Release notes: <ORACLE_HOME\doc\welcome\release_notes\chap_forms.htm

Oracle Forms Developer 10g: Build Internet Applications Preface - 5

Typographic Conventions
Typographic conventions in text

Convention Element Example
Bold italic Glossary term (if there is

a glossary)

The algorithm inserts the new key.

Caps and
lowercase

Buttons,
check boxes,
triggers,
windows

Click the Executable button.
Select the Can’t Delete Card check box.
Assign a When-Validate-Item trigger to the
ORDERS block.
Open the Master Schedule window.

Courier new,
case sensitive
(default is
lowercase)

Code output,
directory names,
filenames,
passwords,
pathnames,
URLs,
user input,
usernames

Code output: debug.set (‘I”, 300);
Directory: bin (DOS), $FMHOME (UNIX)
Filename: Locate the init.ora file.
Password: User tiger as your password.
Pathname: Open c:\my_docs\projects
URL: Go to http://www.oracle.com
User input: Enter 300
Username: Log on as scott

Initial cap Graphics labels
(unless the term is a
proper noun)

Customer address (but Oracle Payables)

Italic Emphasized words and
phrases,
titles of books and
courses,
variables

Do not save changes to the database.

For further information, see Oracle7 Server SQL
Language Reference Manual.

Enter user_id@us.oracle.com, where
user_id is the name of the user.

Quotation
marks

Interface elements with
long names that have
only initial caps;
lesson and chapter titles
in cross-references

Select “Include a reusable module component”
and click Finish.

This subject is covered in Unit II, Lesson 3,
“Working with Objects.”

Uppercase SQL column names,
commands, functions,
schemas, table names

Use the SELECT command to view information
stored in the LAST_NAME
column of the EMP table.

Oracle Forms Developer 10g: Build Internet Applications Preface - 6

Typographic Conventions (continued)
Typographic conventions in text (continued)

Typographic conventions in code

Convention Element Example

Right arrow Menu paths Select File > Save.

Brackets Key names

Press [Enter].

Commas Key sequences Press and release keys one at a time:
[Alternate], [F], [D]

Plus signs Key combinations Press and hold these keys simultaneously:
[Ctrl]+[Alt]+[Del]

Convention Element Example

Caps and
lowercase

Oracle Forms
triggers

When-Validate-Item

Lowercase Column names,
table names

SELECT last_name
FROM s_emp;

 Passwords DROP USER scott
IDENTIFIED BY tiger;

 PL/SQL objects OG_ACTIVATE_LAYER
 (OG_GET_LAYER (‘prod_pie_layer’))

Lowercase italic Syntax variables CREATE ROLE role

Uppercase SQL commands
and functions

SELECT userid
FROM emp;

Copyright © 2004, Oracle. All rights reserved.

Introduction

Schedule: Timing Topic
15 minutes Lecture
15 minutes Total

Oracle Forms Developer 10g: Build Internet Applications I-2

I-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the course objectives
• Identify the course content and structure

Introduction
Overview
This lesson introduces you to the Oracle Forms Developer 10g: Build Internet
Applications course:

• The objectives that the course intends to meet
• The topics that it covers
• How the topics are structured over the duration of the course

Oracle Forms Developer 10g: Build Internet Applications I-3

I-3 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Create form modules including components for

database interaction and GUI controls.
• Display form modules in multiple windows and a

variety of layout styles.
• Test form modules in a Web browser.
• Debug form modules in a three-tier environment.

Course Objectives
Course Description
In this course, you will learn to build, test, and deploy interactive Internet applications.
Working in a graphical user interface (GUI) environment, you will learn how to create
and customize forms with user input items such as check boxes, list items, and radio
groups. You will also learn how to modify data access by creating event-related triggers,
and you will display Forms elements and data in multiple canvases and windows.

Oracle Forms Developer 10g: Build Internet Applications I-4

I-4 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

• Implement triggers to:
– Enhance functionality
– Communicate with users
– Supplement validation
– Control navigation
– Modify default transaction processing
– Control user interaction

• Reuse objects and code
• Link one form module to another

Oracle Forms Developer 10g: Build Internet Applications I-5

I-5 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 1
• Lesson 1: Introduction to Oracle Forms Developer

and Oracle Forms Services
• Lesson 2: Running a Forms Builder Application
• Lesson 3: Working in the Forms Developer

Environment
• Lesson 4: Creating a Basic Form Module
• Lesson 5: Creating a Master-Detail Form
• Lesson 6: Working with Data Blocks and Frames

Course Content
The lesson titles show the topics that is covered in this course, and the usual sequence of
lessons. However, the daily schedule is an estimate, and may vary for each class.

Oracle Forms Developer 10g: Build Internet Applications I-6

I-6 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 2
• Lesson 7: Working with Text Items
• Lesson 8: Creating LOVs and Editors
• Lesson 9: Creating Additional Input Items
• Lesson 10: Creating Noninput Items

Oracle Forms Developer 10g: Build Internet Applications I-7

I-7 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 3
• Lesson 11: Creating Windows and Content

Canvases
• Lesson 12: Working with Other Canvas Types
• Lesson 13: Introduction to Triggers
• Lesson 14: Producing Triggers
• Lesson 15: Debugging Triggers

Oracle Forms Developer 10g: Build Internet Applications I-8

I-8 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 4
• Lesson 16: Adding Functionality to Items
• Lesson 17: Run-time Messages and Alerts
• Lesson 18: Query Triggers
• Lesson 19: Validation
• Lesson 20: Navigation

Oracle Forms Developer 10g: Build Internet Applications I-9

I-9 Copyright © 2004, Oracle. All rights reserved.

Course Content

Day 5
• Lesson 21: Transaction Processing
• Lesson 22: Writing Flexible Code
• Lesson 23: Sharing Objects and Code
• Lesson 24: Using WebUtil to Interact with the

Client
• Lesson 25: Introducing Multiple Form Applications

Copyright © 2004, Oracle. All rights reserved.

Introduction to Triggers

Schedule: Timing Topic
15 minutes Lecture
15 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 13-2

13-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Define triggers
• Identify the different trigger categories
• Plan the type and scope of triggers in a form
• Describe the properties that affect the behavior of

a trigger

Objectives
Triggers are one of the most important mechanisms that you can use to modify or add to
the functionality of a form. In this lesson, you learn the essential rules and properties of
triggers so that you can use them throughout your application.

Oracle Forms Developer 10g: Build Internet Applications 13-3

13-3 Copyright © 2004, Oracle. All rights reserved.

Trigger Overview

Event

Trigger types

Queries

Validation

Navigation

Interaction

Internal event

Errors/Messages

Others

PL/SQL

Fire
PL/SQL

PL/SQL

Which trigger would you use to perform complex calculations
after a user enters data into an item?

Trigger Overview
A trigger is a program unit that is executed (fired) due to an event. As explained earlier,
Forms Builder enables you to build powerful facilities into applications without writing a
single line of code. You can use triggers to add or modify form functionality in a
procedural way. As a result, you can define the detailed processes of your application.
You write Forms Builder triggers in PL/SQL. Every trigger that you define is associated
with a specific event. Forms Builder defines a vast range of events for which you can fire
a trigger. These events include the following:

• Query-related events
• Data entry and validation
• Logical or physical navigation
• Operator interaction with items in the form
• Internal events in the form
• Errors and messages

Events cause the activation, or firing, of certain trigger types. The next page shows the
categories of triggers and when they fire. Which trigger would you use to perform
complex calculations after a user enters data into an item?

Oracle Forms Developer 10g: Build Internet Applications 13-4

13-4 Copyright © 2004, Oracle. All rights reserved.

Grouping Triggers into Categories

Triggers may be grouped
into functional categories:
• Block processing

triggers
• Interface event triggers
• Master-detail triggers
• Message handling

triggers
• Navigational triggers
• Query-time triggers
• Transactional triggers
• Validation triggers

Triggers may be grouped
into categories based on
name:
• When-Event triggers
• On-Event triggers
• Pre-Event triggers
• Post-Event triggers
• Key triggers

Oracle Forms Developer 10g: Build Internet Applications 13-5

Category Description
When-Event Point at which Forms default processing may be augmented with

additional tasks or operations
On-Event Point at which Forms default processing may be replaced
Pre-Event Point just prior to the occurrence of either a When-event or an On-event;

use to prepare objects or data for the upcoming event
Post-Event Point just following the occurrence of either a When-event or an On-

event; use to validate or perform auditing tasks based on the prior event
Key Triggers Fires when the operator presses a specific key or key-sequence.

Trigger Categories
Triggers may be categorized based on their functions:

You can also categorize triggers based on their names:

Category Fires Examples
Block
processing

In response to events
related to record
management in a block.

When-Create-Record
When-Clear-Block
When-Database-Record
When-Remove-Record

Interface
event

In response to events that
occur in the form interface

Key-[all]
When-Button-Pressed
When-[Checkbox | List | Radio]-Changed
When-Image-[Activated | Pressed]
When-Timer-Expired
When-Window-[Activated | Deactivated |
Closed | Resized]

Master-detail To enforce coordination
between records in a detail
block and the master record
in a master block.

On-Check-Delete-Master
On-Clear-Details
On-Populate-Details

Message-
handling

In response to default
messaging events

On-Error
On-Message

Navigational In response to navigational
events

Pre-[Form | Block | Record | Text-Item]
Post-[Form | Block | Record | Text-Item]
When-New-[Form | Block | Record | Item]-
Instance

Query-time Just before and just after
the operator or the
application executes a
query in a block

Pre-Query
Post-Query

Validation When Forms validates data
after the user enters data
and navigates out of the
item or record

When-Validate-[Item | Record]

Oracle Forms Developer 10g: Build Internet Applications 13-6

13-6 Copyright © 2004, Oracle. All rights reserved.

Defining Trigger Components

What event? What action?

What level?

Type
Code

Scope

Trigger Components
There are three main components to consider when you design a trigger in Forms Builder:

• Trigger type: Defines the specific event that will cause the trigger to fire
• Trigger code: The body of PL/SQL that defines the actions of the trigger
• Trigger scope: The level in a form module at which the trigger is defined—

determining the scope of events that will be detected by the trigger

Oracle Forms Developer 10g: Build Internet Applications 13-7

13-7 Copyright © 2004, Oracle. All rights reserved.

Trigger Type

• Pre-
• Post-
• When-
• On-
• Key-
• User-named

Type

Code

Scope

What event?

Trigger Type
The trigger type determines which type of event fires it. There are more than 100 built-in
triggers, each identified by a specific name. Triggers are mostly fired by events within a
form module. Menu modules can initiate an event in a form, but the form module owns
the trigger that fires.
The name of a trigger identifies its type. All built-in trigger types are associated with an
event, and their names always contain a hyphen (-). For example:

• When-Validate-Item fires when Forms validates an item.
• Pre-Query fires before Forms issues a query for a block.

Note: Database events that occur on behalf of a form can fire certain triggers, but these
database triggers are different from Forms Builder triggers.
Forms Builder supports user-named triggers as well as the standard built-in triggers. A
user-named trigger is one that is named by the designer. These triggers fire only if called
upon by another trigger or program unit using built-in code features.

Oracle Forms Developer 10g: Build Internet Applications 13-8

13-8 Copyright © 2004, Oracle. All rights reserved.

Trigger Type

Forms Builder Trigger Types

Trigger Type (continued)
The first part of a trigger name (before the first hyphen) follows a standard convention;
this helps you to understand the general nature of the trigger type, and plan the types to
use.

Instructor Note
When-Mouse-Move/Enter/Leave triggers, although still in existence, are ignored when
running on the Web due to the amount of network traffic that would be generated.

Trigger Prefix Description
Key- Fires in place of the standard action of a function key
On- Fires in place of standard processing (used to replace or bypass a

process)
Pre- Fires just before the action named in the trigger type (for

example, before a query is executed)
Post- Fires just after the action named in the trigger type (for example,

after a query is executed)
When- Fires in addition to standard processing (used to augment

functionality)

Oracle Forms Developer 10g: Build Internet Applications 13-9

13-9 Copyright © 2004, Oracle. All rights reserved.

Trigger Code

• Statements
• PL/SQL
• User

subprograms
• Built-in

subprograms

Type

Code

Scope

What action?

Trigger Code
The code of the trigger defines the actions for the trigger to perform when it fires. Write
this code as an anonymous PL/SQL block by using the PL/SQL Editor. You need to enter
the BEGIN. . . END structure in your trigger text only if you start your block with a
DECLARE statement or if you need to code subblocks.
Statements that you write in a trigger can be constructed as follows:

• Standard PL/SQL constructs (assignments, control statements, and so on)
• SQL statements that are legal in a PL/SQL block; these are passed to the server
• Calls to user-named subprograms (procedures and functions) in the form, a library,

or the database
• Calls to built-in subprograms and package subprograms

Although you can include SQL statements in a trigger, keep in mind the following rules:
• INSERT, UPDATE, and DELETE statements can be placed in transactional triggers.

These triggers fire during the commit process.
• Transaction control statements (COMMIT, ROLLBACK, SAVEPOINT) should not be

included directly as SQL trigger statements. These actions are carried out
automatically by Forms as a result of either commands or built-in procedures that
you issue. If included in triggers, these commands are redirected to be handled by
Forms. For example, COMMIT will issue a COMMIT_FORM.

Oracle Forms Developer 10g: Build Internet Applications 13-10

13-10 Copyright © 2004, Oracle. All rights reserved.

Trigger Scope

Levels
• Form
• Block
• Item

Code

Scope

Type

What level?

Trigger Scope
The scope of a trigger is determined by its position in the form object hierarchy, that is,
the type of object under which you create the trigger. There are three possible levels:

• Form level: The trigger belongs to the form and can fire due to events across the
entire form.

• Block level: The trigger belongs to a block and can fire only when this block is the
current block.

• Item level: The trigger belongs to an individual item and can fire only when this
item is the current item.

Some triggers cannot be defined below a certain level. For example, Post-Query triggers
cannot be defined at item level, because they fire due to a global or restricted query on a
block.
By default, only the trigger that is most specific to the current location of the cursor fires.

Oracle Forms Developer 10g: Build Internet Applications 13-11

13-11 Copyright © 2004, Oracle. All rights reserved.

Trigger Scope

EventEvent

Event

Order
Date

Trigger Scope (continued)
Consider the example in the diagram above:

• When the cursor is in the Order_Date item, a message fires the On-Message
trigger of the Order_Date item, because this is more specific than the other
triggers of this type.

• When the cursor is elsewhere in the ORDERS block, a message causes the
block-level On-Message trigger to fire, because its scope is more specific than the
form-level trigger. (You are outside the scope of the item-level trigger.)

• When the cursor is in the ITEMS block, a message causes the form-level
On-Message trigger to fire, because the cursor is outside the scope of the other two
On-Message triggers.

Note: The On-Message trigger fires whenever Forms displays a message. It is
recommended that you code On-Message triggers only at the form level.

Oracle Forms Developer 10g: Build Internet Applications 13-12

13-12 Copyright © 2004, Oracle. All rights reserved.

Specifying Execution Hierarchy

Form
level

Block
level

Item
level

On-Message

On-Message

On-Message

On-Error

On-Error

EH = After

EH = After

EH = Before

EH = Override

1

2

3

4

Event

Event

Execution Hierarchy
As already stated, when there is more than one trigger of the same type, Forms normally
fires the trigger most specific to the cursor location. You can alter the firing sequence of a
trigger by setting the execution hierarchy (EH) trigger property.
The diagram above shows how setting EH affects the firing order of triggers:

1. Fires first
2. Fires second
3. Fires third
4. Fires independently

Note: Broken lines indicate the analysis path before firing. EH stands for execution
hierarchy.

Oracle Forms Developer 10g: Build Internet Applications 13-13

Execution Hierarchy (continued)
Execution hierarchy (EH) is a trigger property that specifies how the current trigger code
should execute if there is a trigger with the same name defined at a higher level in the
object hierarchy. Setting EH for form level triggers has no effect, since there is no higher
level trigger.
Settings for execution hierarchy are:

• Override: Only the trigger most specific to the cursor location fires. This is the
default.

• After: The trigger fires after firing the same trigger, if any, at the next highest level.
• Before: The trigger fires before firing the same trigger, if any, at the next highest

level.
In the cases of Before and After, you can fire more than one trigger of the same type due
to a single event. However, you must define each trigger at a different level.

Instructor Note
Demonstration
Open the form EH_DEMO.fmb, which is based on the CUSTOMERS table. Point out that
there are On-Error triggers defined at form level, block level, and item level (for
CUSTOMERS.customer_id). The triggers just display a message indicating the level
of the trigger that fires. Run the form and insert text into CUSTOMERS.customer_id,
then navigate to the next item. This causes the On-Error trigger to fire only for the item
level.
Set EH property to “before” for block level and to “after” for item level. Run the form and
cause the error as before. This causes the On-Error triggers to fire according to the EH
settings: first block level, then form level, and finally item level.
Point out to students that setting EH at form level would not affect the execution order.
Also inform them that it is recommended to define On-Error triggers only at form level,
but it is used here just to illustrate trigger scope.

Oracle Forms Developer 10g: Build Internet Applications 13-14

13-14 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Triggers are event-activated program units
• You can categorize triggers based on function or

name to help you understand how they work
• Trigger components are:

– Type: Defines the event that fires the trigger
– Code: The actions a trigger performs
– Scope: Specifies the level (form, block, or item) at

which the trigger is defined
• The Execution Hierarchy trigger property alters

the firing sequence of a trigger

Summary
In this lesson, you should have learned the essential rules and properties for triggers.

• Triggers are event-activated program units.
• You can categorize triggers based on:

Function: Block-processing, Interface event, Master-detail, Message-handling,
Navigational, Query-time, Transactional, Validation
Name: When-, On-, Pre-, Post-, Key-

• Trigger components include:
The trigger type that defines the event that fires the trigger
The trigger code that consists of a PL/SQL anonymous bloc
The trigger scope that determines which events will be detected by the trigger;
the three possible levels for a trigger are form, block, and item

• When an event occurs, the most specific trigger overrides the triggers at a more
general level. This can be affected by the Execution Hierarchy trigger property.

Instructor Note
Ask questions to test understanding of the lesson.

Copyright © 2004, Oracle. All rights reserved.

Producing Triggers

Schedule: Timing Topic
40 minutes Lecture
30 minutes Practice
70 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 14-2

14-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write trigger code
• Explain the use of built-in subprograms in Forms

applications
• Describe the When-Button-Pressed trigger
• Describe the When-Window-Closed trigger

Introduction
Overview
This lesson shows you how to create triggers. You specifically learn how to use built-in
subprograms in Oracle Forms Developer applications.

Oracle Forms Developer 10g: Build Internet Applications 14-3

14-3 Copyright © 2004, Oracle. All rights reserved.

Creating Triggers in Forms Builder

To produce a trigger:
1. Select a scope in the Object Navigator.
2. Create a trigger and select a name from the

Trigger LOV, or use the SmartTriggers menu
option.

3. Define code in the PL/SQL Editor.
4. Compile.

Defining Triggers in Forms Builder
Using Smart Triggers
When you right-click an object in the Object Navigator or Layout Editor, a pop-up menu
displays that includes the selection Smart Triggers. The Smart Triggers item expands to
an LOV of common triggers that are appropriate for the selected object. When you click
one of these triggers, Forms Builder creates the trigger.
Using the Trigger LOV
Using Smart Triggers is the easiest way to create a new trigger, but you can also do it by
displaying the Trigger LOV, a list of all Forms Builder triggers. You can invoke the
Trigger LOV from the Object Navigator, the Layout Editor, the PL/SQL Editor, or the
Smart Triggers LOV.
How to Create a Trigger
Use the steps on the following pages to create a trigger.

Oracle Forms Developer 10g: Build Internet Applications 14-4

14-4 Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step One:

Select Trigger Scope.

Form level

Block level

Item level

Creating a Trigger
Step One: Select Trigger Scope
In the Object Navigator, select the Triggers node of the form, block, or item that will own
the trigger. Alternatively, you can select an item in the Layout Editor if you are defining
an item level trigger.
A mistake often made by inexperienced Forms developers is to define a trigger at the
wrong scope. For example, if you want a message to display when the cursor enters an
item, you should code a When-New-Item-Instance trigger at the item level for that item. If
you mistakenly put the trigger at the block or form level, the trigger will fire whenever the
operator navigates to any item in the block or form.

Oracle Forms Developer 10g: Build Internet Applications 14-5

14-5 Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step Two:

Invoke the
Trigger LOV.

Creating a Trigger (continued)
Step Two: Invoke the Trigger LOV
Once the trigger scope is selected, there are several ways to invoke the Trigger LOV:

• Smart Triggers: Right-click to display the pop-up menu. Select Smart Triggers.
This invokes the Smart Triggers LOV displaying a list of common triggers for the
selected object. If you do not see the desired trigger, select Other to display the
Trigger LOV with a full list of triggers.

• Create: If you are in the Object Navigator with a Triggers node highlighted, select
Edit > Create from the menu, or click Create in the toolbar. This invokes the Trigger
LOV.

• PL/SQL Editor: Right click to display the pop-up menu. Select PL/SQL Editor.
If there is no trigger defined for the object, this invokes the Trigger LOV.
If there are already triggers defined for the object, the name and code of the
first one appear in the editor. To define an additional trigger for the item, click
Create in the Object Navigator toolbar to invoke the Trigger LOV.

Once the Trigger LOV is invoked, select the trigger type.

Oracle Forms Developer 10g: Build Internet Applications 14-6

14-6 Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step Three:

Use the PL/SQL Editor to define the trigger code.
Name

ItemObjectType

Source
Pane

Toolbar

Step Four:

Compile.

Creating a Trigger (continued)
Step Three: Use the PL/SQL Editor to Define the Trigger Code
The trigger type and scope are now set in the PL/SQL Editor. You can enter the code for
the trigger in the source pane of the editor.
In Forms Builder, the PL/SQL Editor has the following specific trigger components:

• Name: Trigger name; pop-up list enables you to switch to a different trigger.
• Type: The type is set to Trigger. (The other types are Program Unit and Menu Item

Code, but these are not valid for triggers.)
• Object: Enables you to set the scope to either Form Level, or a specific block
• Item: Enables you to change between specific items (at item level) to access other

triggers. The Item trigger component is not labeled.
• Source pane: Where trigger code is entered or modified
• Toolbar: Buttons to compile, revert, undo, redo, indent, or outdent the code

Step Four: Compile
Click the Compile icon in the PL/SQL Editor to compile the trigger. This displays
immediate feedback in the form of compilation error messages, which you can correct. If
the trigger compiles correctly, a message displays in the lower right corner of the editor.

Oracle Forms Developer 10g: Build Internet Applications 14-7

14-7 Copyright © 2004, Oracle. All rights reserved.

Setting Trigger Properties

Setting Trigger Properties
You can set the following trigger properties to affect the behavior of triggers:
General

• Name: Specifies the internal name of the trigger
Functional

• Fire in Enter Query Mode: Specify whether the trigger can fire when an event
occurs in Enter Query as well as Normal mode.

• Execution Hierarchy: Use to change the default order of trigger firing when
multiple triggers of the same name are defined at different levels.

Help (these properties valid only for Key triggers)
• Display in “Keyboard Help”: Specify whether you want the name or description to

appear in the Show Keys window.
• “Keyboard Help” Text: Description to replace the default key description.

Instructor Note
Execution hierarchy is explained in Lesson 12. Trigger Style is now a read-only property
for which PL/SQL is the only valid value.

Oracle Forms Developer 10g: Build Internet Applications 14-8

14-8 Copyright © 2004, Oracle. All rights reserved.

PL/SQL Editor Features

Split view

Split Bars

5

1 432

PL/SQL Editor Features
The PL/SQL Editor provides the following features:

• Automatic Formatting and Coloring of PL/SQL Code
• Automatic Indenting and Color Syntax highlighting
• Drag and Drop text Manipulation
• Unlimited Undo/Redo
• Multiple Split Views

You can create up to four separate views of the current program unit in the PL/SQL Editor
by using split bars. Place the cursor over the split bar; it changes to a double-headed
arrow. Left-click and drag the split bar to the desired location. To remove the split, drag it
back to its original location.
Trigger Components of the PL/SQL Editor

1. Type: Set to Trigger
2. Object: Enables you to set scope to Form Level or a specified block
3. Item: Enables you to switch between items (if item-level trigger) to access other

triggers
4. Name: Trigger name; enables you to switch to another existing trigger
5. Source Pane: Where trigger code is entered or modified

Oracle Forms Developer 10g: Build Internet Applications 14-9

14-9 Copyright © 2004, Oracle. All rights reserved.

PL/SQL Editor Features

The
Syntax
Palette

PL/SQL Editor Features (continued)
Syntax Palette: Enables you to display and copy the constructs of PL/SQL language
elements and build packages into an editor. To invoke the Syntax Palette, select Tools >
Syntax Palette from the menu system.
Global search and replace: Enables you to search for text across multiple program units
without opening individual instances of the Program Unit Editor. Replace every
occurrence of the search string or selected occurrences only.
Invoke the Find and Replace in Program Units dialog box by selecting Edit > Find and
Replace PL/SQL from the menu system.
Things to Remember About the PL/SQL Editor

• New or changed text in triggers remains uncompiled until you click Compile.
• Compiling triggers that contain SQL require connection to the database.
• All uncompiled triggers are compiled when the form module is compiled.
• The Block and Item pop-up lists do not change the current trigger scope. They

enable you to switch to another trigger.

Instructor Note
Demonstrate both the Syntax Palette and the Global Search and Replace in Forms Builder.

Oracle Forms Developer 10g: Build Internet Applications 14-10

14-10 Copyright © 2004, Oracle. All rights reserved.

The Database Trigger Editor

The Database Trigger Editor
The logical grouping of items within the Database Trigger Editor enables developers to
create row and statement triggers easily. An error message box displays an error when you
try to retrieve, store, or drop an invalid trigger. To create a database trigger by using the
Database Trigger Editor, perform the following steps:

1. In the Object Navigator, expand the Database Objects node to display the schema
nodes.

2. Expand a schema node to display the database objects.
3. Expand the Tables node to display the schema’s database tables.
4. Select and expand the desired table.
5. Select the Triggers node and choose Edit > Create, or click Create on the toolbar.

The Database Trigger Editor appears.
6. In the Database Trigger Editor, click New.
7. Define and save the desired program units.

Oracle Forms Developer 10g: Build Internet Applications 14-11

14-11 Copyright © 2004, Oracle. All rights reserved.

Writing Trigger Code

BEGIN

END;

A PL/SQL Block

Writing Trigger Code
The code text of a Forms Builder trigger is a PL/SQL block that consists of three sections:

• A declaration section for variables, constants, and exceptions (optional)
• An executable statements section (required)
• An exception handlers section (optional)

If your trigger code does not require defined variables, you do not need to include the
BEGIN and END keywords; they are added implicitly.

Instructor Note
Explain the general structure of a trigger code.
The examples that follow are mainly aimed at showing possible structures; their detailed
content is not very important at this stage.

Oracle Forms Developer 10g: Build Internet Applications 14-12

Writing Trigger Code (continued)
Examples

1. If the trigger does not require declarative statements, the BEGIN and END keywords
are optional. When-Validate-Item trigger:

IF :ORDER_ITEMS.unit_price IS NULL THEN
:ORDER_ITEMS.unit_price := :PRODUCTS.list_price;

END IF;
calculate_total; -- User-named procedure

2. If the trigger requires declarative statements, the BEGIN and END keywords are
required. When-Button-Pressed trigger:

DECLARE
vn_discount NUMBER;
BEGIN
vn_discount:=calculate_discount
(:ORDER_ITEMS.product_id,:ORDER_ITEMS.quantity);
MESSAGE(’Discount: ’||TO_CHAR(vn_discount));
END;

3. To handle exceptions, include EXCEPTION section in trigger. Post-Insert trigger:
INSERT INTO LOG_TAB (LOG_VAL, LOG_USER)
VALUES(:DEPARTMENTS.department_id,:GLOBAL.username);
EXCEPTION
WHEN OTHERS THEN
MESSAGE(’Error! ’,||SQLERRM);

Oracle Forms Developer 10g: Build Internet Applications 14-13

14-13 Copyright © 2004, Oracle. All rights reserved.

• PL/SQL variables must be declared in a trigger or
defined in a package

• Forms Builder variables
– Are not formally declared in PL/SQL
– Need a colon (:) prefix in reference

Using Variables in Triggers

Using Variables in Triggers
In triggers and subprograms, Forms Builder generally accepts two types of variables for
storing values:

• PL/SQL variables: These must be declared in a DECLARE section, and remain
available until the end of the declaring block. They are not prefixed by a colon. If
declared in a PL/SQL package, a variable is accessible across all triggers that access
this package.

• Forms Builder variables: Variable types maintained by the Forms Builder. These
are seen by PL/SQL as external variables, and require a colon (:) prefix to
distinguish them from PL/SQL objects (except when their name is passed as a
character string to a subprogram). Forms Builder variables are not formally declared
in a DECLARE section, and can exist outside the scope of a PL/SQL block.

Oracle Forms Developer 10g: Build Internet Applications 14-14

14-14 Copyright © 2004, Oracle. All rights reserved.

Forms Builder Variables

Variable
Type

Items

Global
variable

System
variables

Parameters

Purpose

Presentation and
user interaction

Session-wide
character variable

Form status and
control

Passing values in
and out of module

Syntax

:block_name.item_name

:GLOBAL.variable_name

:SYSTEM.variable_name

:PARAMETER.name

Forms Builder Variables

Instructor Note
Explain syntax of above variables with reference to examples on next page.What kind of
object is OK_TO_LEAVE_BLOCK? Point out that more specific examples and how to
manage these variables will be covered in later lessons.

Form Builder
Variable Type

Scope Use

Item (text, list, check
box, and so on)

Current form and attached
menu

Presentation and interaction
with user

Global variable All modules in current
session

Session-wide storage of
character data

System variable Current form and attached
menu

Form status and control
Note: The contents of system
variables are in uppercase.

Parameter Current module Passing values in and out of
module

Oracle Forms Developer 10g: Build Internet Applications 14-15

Forms Builder Variables (continued)
In each of the following examples of using Forms Builder variables, note that a colon (:)
prefixes Forms Builder variables, and a period (.) separates the components of their name.
The examples are not complete triggers.
Examples

1. References to items should be prefixed by the name of the owning Forms Builder
block, which prevents ambiguity when items of the same name exist in different
blocks. This is also more efficient than the item name alone:

:BLOCK3.product_id := :BLOCK2.product_id;
2. References to global variables must be prefixed by the word global. They may be

created as the result of an assignment:
:GLOBAL.customer_id := :BLOCK1.id;

3. References to system variables must be prefixed by the word System, and the
contents must be in uppercase (’NORMAL’, not ’normal’):

IF :SYSTEM.MODE = ’NORMAL’ THEN
ok_to_leave_block := TRUE;

END IF;
4. Parameters defined at design-time have the prefix parameter:

IF :PARAMETER.starting_point = 2 THEN
GO_BLOCK(’BLOCK2’); -- built-in procedure

END IF;

Initializing Global Variables with Default Value
You can use the DEFAULT_VALUE built-in to assign a value to a global variable. Forms
Builder creates the global variable if it does not exist. If the value of the indicated variable
is not null, DEFAULT_VALUE does nothing. The following example creates a global
variable named country and initializes it with the value TURKEY:

Default_Value(’TURKEY’,’GLOBAL.country’);

Removing Global Variables
You can use the ERASE built-in to remove a global variable. Globals always allocate 255
bytes of storage. To ensure that performance is not impacted more than necessary, always
erase any global variable when it is no longer needed.

Oracle Forms Developer 10g: Build Internet Applications 14-16

14-16 Copyright © 2004, Oracle. All rights reserved.

Adding Functionality with
Built-In Subprograms

Built-ins belong to either:
• The Standard Extensions

package where no prefix is
required

• Another Forms Builder
package where a prefix is
required

Adding Functionality with Built-In Subprograms
Forms Builder provides a set of predefined subprograms as part of the product. These
subprograms are defined within built-in packages as either a procedure or function.
Forms Builder built-in subprograms belong to one of the following:

• Standard Extensions package: These built-ins are integrated into the Standard
PL/SQL command set in Forms Builder. You can call them directly, without any
package prefix. You can use more than one hundred standard built-ins.
Example: EXECUTE_QUERY;

• Other Forms Builder packages: Subprograms in other built-in packages provide
functionality related to a particular supported feature. These require the package
name as a prefix when called.
Example: ORA_JAVA.CLEAR_EXCEPTION;

All the built-in subprograms used in this lesson are part of the Standard Extensions
package.

Oracle Forms Developer 10g: Build Internet Applications 14-17

Adding Functionality with Built-In Subprograms (continued)
In addition to the standard extensions, Forms Builder provides the following packages:

Note: Some of these packages, such as OLE2, ORA_FFI, and TEXT_IO, function on the
application server side, not on the client side. For example, TOOL_ENV enables you to get
and set environment variables on the application server. To interact with the client, you
would need to provide similar functionality in a JavaBean.

Package Description
DDE Provides Dynamic Data Exchange support
DEBUG Provides built-ins for debugging PL/SQL program units
EXEC_SQL Provides built-ins for executing dynamic SQL within PL/SQL procedures
FBEAN Provides built-ins to interact with client-side Java beans
FTREE Provides built-ins for manipulating hierarchical tree items
OLE2 Provides a PL/SQL API for creating, manipulating, and accessing

attributes of OLE2 automation objects.
ORA_FFI Provides built-ins for calling out to foreign (C) functions from PL/SQL
ORA_JAVA Enables you to call Java procedures from PL/SQL
ORA_NLS Enables you to extract high-level information about your current

language environment
ORA_PROF Provides built-ins for tuning PL/SQL program units
TEXT_IO Provides built-ins to read and write information to and from files
TOOL_ENV Enables you to interact with Oracle environment variables
TOOL_ERR Enables you to access and manipulate the error stack created by other

built-in packages such as Debug
TOOL_RES Provides built-ins to manipulate resource files
WEB Provides built-ins for the Web environment

Oracle Forms Developer 10g: Build Internet Applications 14-18

14-18 Copyright © 2004, Oracle. All rights reserved.

Limits of Use

• Unrestricted built-ins are allowed in any trigger or
subprogram.

• Restricted built-ins are allowed only in certain
triggers and subprograms called from such
triggers.

• Consult the Help
system.

Compiles:

Run-time error when
trigger fires:

Limits of Use
You can call built-ins in any trigger or user-named subprogram in which you use
PL/SQL. However, some built-ins provide functionality that is not allowed in certain
trigger types. Built-ins are therefore divided into two groups:

• Unrestricted built-ins: Unrestricted built-ins do not affect logical or physical
navigation and can be called from any trigger, or from any subprogram.

• Restricted built-ins: Restricted built-ins affect navigation in your form, either
external screen navigation, or internal navigation. You can call these built-ins only
from triggers while no internal navigation is occurring. The online Help specifies
which groups of built-ins can be used in each trigger.

Calling a restricted built-in from a navigational trigger compiles successfully but causes a
run-time error. For example, you can compile a Pre-Text-Item trigger that calls the
restricted GO_ITEM built-in, but when the trigger fires at run-time it produces the
FRM-40737 error.

Oracle Forms Developer 10g: Build Internet Applications 14-19

14-19 Copyright © 2004, Oracle. All rights reserved.

1

Using Built-In Definitions

4

2

3

Using Built-In Definitions
When you are writing a trigger or a program unit, the Forms Builder enables you to look
up built-in definitions, and optionally copy their names and argument prototypes into your
code.

1. Place the cursor at the point in your PL/SQL code (in the PL/SQL Editor) where a
built-in subprogram is to be called.

2. Expand the Built-in Packages node in the Navigator, and select the procedure or
function that you need to use (usually from Standard Extensions).

3. If you want to copy the built-in prototype arguments or name, or both, select Edit >
Paste Name or Edit > Paste Arguments from the menus (Paste Arguments includes
both the built-in name and its arguments).

4. The definition of the built-in is copied to the cursor position in the PL/SQL Editor,
where you can insert your own values for arguments, as required.

Oracle Forms Developer 10g: Build Internet Applications 14-20

Using Built-In Definitions (continued)
Note: A subprogram can be either a procedure or a function. Built-in subprograms are
therefore called in two distinct ways:

• Built-in procedures: Called as a complete statement in a trigger or program unit
with mandatory arguments.

• Built-in functions: Called as part of a statement, in a trigger or program unit, at a
position where the function’s return value will be used. Again, the function call must
include any mandatory arguments.

Example
The SHOW_LOV built-in is a function that returns a Boolean value (indicating whether the
user has chosen a value from the LOV). It might be called as part of an assignment to a
boolean variable. This is not a complete trigger.

DECLARE
customer_chosen BOOLEAN;

BEGIN
customer_chosen := SHOW_LOV(’customer_list’);

. . .

Instructor Note
Point out the overloadings in the list within the Object Navigator. You can use the find
feature in the Object Navigator to bypass this overload in the list. Point out how you can
locate the built-in in Help. Highlight an example using a built-in. Copy it, then close Help
and paste in the PL/SQL Editor.
Demonstration: Use SHOW_LOV to demonstrate how you can paste prototype syntax for
a built-in from the Object Navigator into a trigger or program unit.

Oracle Forms Developer 10g: Build Internet Applications 14-21

14-21 Copyright © 2004, Oracle. All rights reserved.

Useful Built-Ins

• EDIT_TEXTITEM
• ENTER_QUERY, EXECUTE_QUERY
• EXIT_FORM
• GET_ITEM_PROPERTY, SET_ITEM_PROPERTY
• GO_BLOCK, GO_ITEM
• MESSAGE
• SHOW_ALERT, SHOW_EDITOR, SHOW_LOV
• SHOW_VIEW, HIDE_VIEW

Useful Built-Ins
The table on the next page describes some built-ins that you can use in triggers to add
functionality to items. They are discussed in later lessons.

Oracle Forms Developer 10g: Build Internet Applications 14-22

Built-in Subprogram Description

EDIT_TEXTITEM procedure Invokes the Form Runtime item editor for the current
text item

ENTER_QUERY procedure Clears the current block and creates a sample record.
Operators can then specify query conditions before
executing the query with a menu or button command.
If there are changes to commit, the Forms Builder
prompts the operator to commit them before continuing
ENTER_QUERY processing.

EXECUTE_QUERY procedure Clears the current block, opens a query, and fetches a
number of selected records. If there are changes to
commit, Forms Builder prompts the operator to commit
them before continuing EXECUTE_QUERY
processing.

EXIT_FORM procedure If in normal mode, exits current form; if in ENTER-
QUERY mode, cancels query

GET_ITEM_PROPERTY
function

Returns specified property values for the indicated item

GO_BLOCK procedure Navigates to the specified block
GO_ITEM procedure Navigates to the specified item
HIDE_VIEW procedure Hides the indicated canvas
LIST_VALUES procedure Invokes the LOV attached to the current item
MESSAGE procedure Displays specified text on the message line
SET_ITEM_PROPERTY
procedure

Changes setting of specified property for an item

SHOW_ALERT function Displays the given alert and returns a numeric value
when the operator selects one of three alert buttons

SHOW_EDITOR procedure Displays the specified editor at the given coordinates
and passes a string to the editor, or retrieves an existing
string from the editor

SHOW_LOV function Invokes a specified LOV and returns a Boolean value
that indicates whether user selected a value from the
list

SHOW_VIEW procedure Displays the indicated canvas at the coordinates
specified by the X Position and Y Position of the
canvas property settings. If the view is already
displayed, SHOW_VIEW raises it in front of any other
views in the same window.

Useful Built-Ins (continued)

Oracle Forms Developer 10g: Build Internet Applications 14-23

14-23 Copyright © 2004, Oracle. All rights reserved.

Using Triggers:
When-Button-Pressed Trigger

• Fires when the operator clicks a button
• Accepts restricted and unrestricted built-ins
• Use to provide convenient navigation, to display

LOVs and many other frequently used functions

GO_BLOCK(‘Stock’);
EXECUTE_QUERY;

Using Triggers
When-Button-Pressed Trigger
This trigger fires when the user clicks a button. You can define the trigger on an
individual item or at higher levels if required.
When-Button-Pressed accepts both restricted and unrestricted built-ins. You can
use buttons to provide a wide range of functions for users. These functions include:

• Navigation
• Displaying LOVs
• Invoking calculations and other functions

Example
The Stock_Button in the CONTROL block is situated on the TOOLBAR canvas of the
ORDERS form. When pressed, the button activates the
When-Button-Pressed trigger. The trigger code results in navigation to the
INVENTORIES block and execution of a query on the INVENTORIES block.

GO_BLOCK(’INVENTORIES’);
EXECUTE_QUERY;

Oracle Forms Developer 10g: Build Internet Applications 14-24

14-24 Copyright © 2004, Oracle. All rights reserved.

Using Triggers:
When-Window-Closed Trigger

• Fires when the operator closes a window by using
a window manager-specific close command.

• Accepts restricted and unrestricted built-ins.
• Used to programmatically close a window when

the operator issues a window manager-specific
close command. You can close a window by using
built-ins.

Why can't I close
this window?

Using Triggers
When-Window-Closed Trigger
This trigger fires when you close a window by using a window manager-specific close
command. You define this trigger at the form level.
The When-Window-Closed trigger accepts both restricted and unrestricted built-ins.
Use this trigger to close a window programmatically when the operator issues the window
manager Close command. Forms Builder does not close the window when the operator
issues a window manager-specific close command; it only fires the When-Window-
Closed trigger. It is the developer’s responsibility to write the required functionality in
this trigger. You can close a window with the HIDE_WINDOW,
SET_WINDOW_PROPERTY, and EXIT_FORM built-in subprograms. You cannot hide the
window that contains the current item.
Example
When the operator issues the window manager-specific Close command, the following
code in a When-Window-Closed trigger closes the WIN_INVENTORY window by
setting the VISIBLE property to FALSE.

GO_ITEM(’ORDERS.ORDER_ID’);
SET_WINDOW_PROPERTY(’WIN_INVENTORY’,VISIBLE,PROPERTY_FALSE);

Oracle Forms Developer 10g: Build Internet Applications 14-25

14-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can use the PL/SQL Editor to write trigger

code
• Trigger code has three sections:

– Declaration section (optional)
– Executable statements section (required)
– Exception handlers section (optional)

• You can add functionality by calling built-in
subprograms from triggers

• Restricted built-ins are not allowed in triggers that
fire while navigation is occurring

Summary
• To produce a trigger:

Select a scope in the Object Navigator.
Create a trigger and select a Name from the LOV, or use the SmartTriggers
menu option.
Define code in the PL/SQL Editor.
Compile.

• Find built-ins in the Navigator under Built-in Packages:
Paste built-in name and arguments to your code by using the Paste Name and
Arguments option.
Refer to online Help.

Oracle Forms Developer 10g: Build Internet Applications 14-26

14-26 Copyright © 2004, Oracle. All rights reserved.

Summary

• The When-Button-Pressed trigger fires when the
user presses a button

• The When-Window-Closed trigger fires when the
user closes a window

Summary (continued)
• The When-Button-Pressed trigger provides a wide range of functionality to

users.
• Use the When-Window-Closed trigger to provide functionality when the user

issues a window manager-specific close command.

Oracle Forms Developer 10g: Build Internet Applications 14-27

14-27 Copyright © 2004, Oracle. All rights reserved.

Practice 14 Overview

This practice covers the following topics:
• Using built-ins to display LOVs
• Using the When-Button-Pressed and

When-Window-Closed triggers to add
functionality to applications

• Using built-ins to display and hide the Help stack
canvas

Practice 14 Overview
This practice focuses on how to use When-Button-Pressed and When-Window-
Closed triggers.

• Using built-ins to display LOVs
• Using When-Button-Pressed and When-Window-Closed triggers to add

functionality to the application
• Using built-ins to display and hide the Help stacked canvas

Note: For solutions to this practice, see Practice 14 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 14-28

Practice 14
1. In the CUSTGXX form, write a trigger to display the Account_Mgr_Lov when the

Account_Mgr_Lov_Button is selected. To create the When-Button-Pressed trigger,
use the Smart Triggers feature. Find the relevant built-in in the Object Navigator
under built-in packages, and use the “Paste Name and Arguments” feature.

2. Create a When-Window-Closed trigger at the form level in order to exit form.
3. Save, compile, and run the form. Test to see that the LOV is invoked when you press

the Account_Mgr_Lov_Button and that the form exits when you close the Customer
Information window.

4. In the ORDGXX form, write a trigger to display the Products_Lov when the
Product_Lov_Button is selected and that the form exits when you press the
Exit_Button.

5. Write a trigger that exits the form when the Exit_Button is selected.
6. Save, compile, and run the form. Test to see that the LOV is invoked when you press

the Product_Lov_Button.
7. Create a When-Button-Pressed trigger on CONTROL.Show_Help_Button that uses

the SHOW_VIEW built-in to display the CV_HELP.
8. Create a When-Button-Pressed trigger on CONTROL.Hide_Help_Button that hides

the CV_HELP. Use the HIDE_VIEW built-in to achieve this.
9. Create a When-Button-Pressed trigger on CONTROL.Stock_Button that uses the

GO_BLOCK built-in to display the INVENTORIES block, and EXECUTE_QUERY to
automatically execute a query.

10. Write a form-level When-Window-Closed trigger to hide the WIN_INVENTORY
window if the user attempts to close it, and to exit the form if the user attempts to
close the WIN_ORDER window.
Hint: Use the system variable :SYSTEM.TRIGGER_BLOCK to determine what
block the cursor is in when the trigger fires.

11. Save and compile the form. Click Run Form to run the form and test the changes.
The stacked canvas, CV_HELP, is displayed only if the current item will not be
obscured. Ensure, at least, that the first entered item in the form is one that will not
be obscured by CV_HELP.
You might decide to advertise Help only while the cursor is in certain items, or move
the stacked canvas to a position that does not overlay enterable items.
The CV_HELP canvas, of course, could also be shown in its own window, if
appropriate.

Copyright © 2004, Oracle. All rights reserved.

Debugging Triggers

Schedule: Timing Topic
40 minutes Lecture
25 minutes Practice
65 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 15-2

15-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the components of the Debug Console
• Use the Run Form Debug button to run a form

module in debug mode
• Debug PL/SQL code

Objectives
As you begin to add code to your form by writing triggers, you will probably find that you
sometimes obtain incorrect or unexpected results. In a large application, it may be
difficult to determine the source of the problem.
You can use Forms Builder’s integrated PL/SQL Debugger to locate and correct coding
errors. This lesson explains how to debug your PL/SQL code.

Instructor Note
The PL/SQL Debugger integrated into Forms Builder also enables remote debugging. You
can attach the debugger to a form that is already running by supplying the host name and
port number for that application. However, in this course we present information to enable
developers to debug the triggers they are writing, so this lesson discusses using the
debugger on a form run from Forms Builder.

Oracle Forms Developer 10g: Build Internet Applications 15-3

15-3 Copyright © 2004, Oracle. All rights reserved.

The Debugging Process

Monitor and debug triggers by:
• Compiling and

correcting errors in
the PL/SQL Editor

• Displaying debug
messages at run
time

• Invoking the
PL/SQL Debugger

The Debugging Process
With Forms Builder you can monitor and debug triggers in several ways:

• Compiling: Syntax errors and object reference errors (including references to
database objects) are reported when you compile a trigger or generate the form
module. This enables you to correct these problems in the PL/SQL Editor before run
time.

• Running a form with run time parameter debug_messages=Yes: In Debug
mode, you can request messages to be displayed to indicate when triggers fire. This
helps you to see whether certain triggers are firing, their origin and level, and the
time at which they fire. If an error occurs, you can look at the last trigger that fired
to narrow the scope of the source of the error.

• Invoking the PL/SQL Debugger: You invoke the debugger from Forms Builder by
clicking Run Form Debug on the toolbar.

With the Debugger you can monitor the execution of code within a trigger (and other
program units). You can step through the code on a line-by-line basis, and you can
monitor called subprograms and variables as you do so. You can also modify variables as
the form is running, which allows you to test how various changes in form item values
and variable values will affect your application.

Oracle Forms Developer 10g: Build Internet Applications 15-4

15-4 Copyright © 2004, Oracle. All rights reserved.

The Debug Console

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Dock/
Undock

Click
bar for
Pop-up
Menu

The Debug Console
The debug console is a workspace in Forms Builder that enables you to see various
aspects of the running form and its environment. You display the debug console by
selecting Debug > Debug Console from the menu. It displays automatically when you
encounter a breakpoint in a form that is running in debug mode.
Within the console, you can display several types of panels: Stack, Variables, Watch,
Form Values, Breakpoints, PL/SQL Packages, and Global and System Variables. You can
resize the debug console and any of the panels displayed within it.
You choose which panels to display or close by clicking the toggle buttons on the toolbar
of the Debug Console, or by selecting Debug > Debug Windows from the menu. As you
show and hide panels within the console, the panels automatically expand and contract to
fill the console.
You can undock any of the panels to display them outside the Debug Console by clicking
the upward pointing arrow in the top right of the panel; you redock the panel by clicking
its downward pointing arrow.
If you right click the area beside the dock/undock arrow, you will see a pop-up menu
enabling you to hide, dock, or undock the panel.

Oracle Forms Developer 10g: Build Internet Applications 15-5

15-5 Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Stack Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Stack Panel
The call stack represents the chain of subprograms starting from the initial entry point
down to the currently executing subprogram. The program currently executing in the
example above is EMPLOYEES.SAL.CHECK_PCT, which was called by
EMPLOYEES.SAL.GET_SAL. This program was called from a When-Button-Pressed
trigger, the initial entry point of the current call stack. As you can see, frames are listed in
the reverse order in which the subprograms were executed. The earliest frame is at the
bottom of the stack, while the latest frame is at the top of the stack.
A stack frame contains information about the corresponding subprogram, including the
module name, the package name if any, the subprogram name, and the next statement that
is to be executed. For example, EMPLOYEES.SAL.GET_SAL::19 indicates that line
19 of subprogram GET_SAL in the SAL package contained in the EMPLOYEES module
will be executed when the application returns to that subprogram. When that occurs, the
EMPLOYEES.SAL.CHECK_PCT frame will get pushed off the stack because the
EMPLOYEES.SAL.CHECK_PCT subprogram has finished executing.

Oracle Forms Developer 10g: Build Internet Applications 15-6

15-6 Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Variables Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Read-only:
Modifiable:

The Debug Console: Variables Panel
The variables panel displays the variables of the current stack frame, along with their
values. There is a pop-up list from which you can select the stack frame whose variables
you want to view. You can also switch the variables shown in the variable panel by
clicking a different stack frame in the stack panel if it is open as well. This does not
change the order of execution of program statements, but only the information that is
displayed in the debug console.
A feature of the debugger is that when the form is suspended you can change the variable
values by clicking into the value column and entering a new value. When the program
continues, it will use the new value that you have entered, so that you can test the effect of
changing a value on the final result.
Some variables, such as parameters, cannot be modified. When you click into a read-only
variable, the entire cell is highlighted. Clicking into a modifiable variable will highlight
only the value, not the entire cell.

Oracle Forms Developer 10g: Build Internet Applications 15-7

15-7 Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Watch Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Watch Panel
A running application may have dozens of variables that can be displayed in various
panels in the debug console, but there may be very few that you need to monitor. The
Watch panel provides a central place where you can keep track of any valid variables that
you specify. Only variables which resolve to a scalar value are valid. Stored package
variables are not valid.
Once a variable is displayed in your watch list, when execution is next suspended at a
different location, the variable values in the list are updated as needed if they are available
in the current execution context. If a variable is not defined in the currently executing
subprogram, #### displays in the cell instead of a value.
To add a variable to the Watch panel, perform the following steps:

1. Open the window where the variable is displayed.
2. Select the variable that you want to add to the Watch panel.
3. Right-click the selection and choose Add to Watch from the pop-up menu.

To delete an item from the Watch panel:
• Select it in the Watch panel, right-click, and choose Remove from the pop-up menu.
• To clear the entire Watch panel, choose Remove All.

Oracle Forms Developer 10g: Build Internet Applications 15-8

15-8 Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Form Values Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Form Values Panel
You can use the form values panel to display the values of all items and parameters in
modules that are currently running. You switch between a view of items and a view of
parameters by clicking the corresponding tabs in the panel.
You can change the values of modifiable items to test the effects of such changes. If the
value is read-only, such as display item values, the entire cell is highlighted when you try
to edit it. If the value is modifiable, only the value in the cell is highlighted when you
select it.

Oracle Forms Developer 10g: Build Internet Applications 15-9

15-9 Copyright © 2004, Oracle. All rights reserved.

The Debug Console:
PL/SQL Packages Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: PL/SQL Packages Panel
Use the PL/SQL Packages panel to browse and examine PL/SQL packages that have been
instantiated. Both package specification and package body global variables are listed. You
can view packages only while the runform process is currently executing PL/SQL. You
can also select an option button to determine which packages are displayed: Client,
Server, or All.

Oracle Forms Developer 10g: Build Internet Applications 15-10

15-10 Copyright © 2004, Oracle. All rights reserved.

The Debug Console:
Global/System Variables Panel

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Global/System Variables Panel
Use the Global/System Variables panel to display the current system, global, and
command line variables and their values. You can switch among these types of variables
by clicking the corresponding tabs in the panel.
Command line variables and most system variables are read-only. The only modifiable
system variables are DATE_THRESHOLD, EFFECTIVE_DATE, MESSAGE_LEVEL, and
SUPPRESS_WORKING. You can modify global variables, and the new values will be
used subsequently by the running application.

Oracle Forms Developer 10g: Build Internet Applications 15-11

15-11 Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Breakpoints Panel

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Breakpoints Panel
The Breakpoints panel consists of two tabs:

• Breakpoints tab displays any breakpoints set in the code during the current Forms
Builder session, in order of breakpoint creation.
Display includes:

Name of trigger or program unit
Line number where breakpoint is set
A check box to temporarily enable or disable the breakpoint.

• Enables navigation to source code where breakpoint is set:
By double-clicking the breakpoint name
By highlighting (single-clicking) it, then choosing View Source Code from the
pop-up menu (right-click in Windows). From this pop-up menu, you can also
remove the breakpoint or remove all breakpoints.

Oracle Forms Developer 10g: Build Internet Applications 15-12

15-12 Copyright © 2004, Oracle. All rights reserved.

The Debug Console

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

The Debug Console: Breakpoints Panel (continued)
• The Break On Exceptions tab displays a list of frequently used system exceptions

that you can use during debugging. The display includes:
Exception name
Associated ORA- error number
Check box where you set or unset the breakpoint

Oracle Forms Developer 10g: Build Internet Applications 15-13

15-13 Copyright © 2004, Oracle. All rights reserved.

Setting Breakpoints in Client Code

Breakpoints:
• Suspend form

execution
• Return control

to the debugger
• Remain in effect

for the Forms
Builder session

• May be enabled
and disabled

• Are set in the
PL/SQL Editor
on executable
lines of code

Before setting breakpoint:

After setting breakpoint:

Setting Breakpoints in Client Code
You set breakpoints in code so that the form running in debug mode will be suspended
when a breakpoint is encountered and control will return to the Forms Builder debugger,
allowing you to monitor or change the environment at that point. When you set a
breakpoint, it remains set until you exit the Forms Builder session. However, you can
disable and enable breakpoints as needed by unchecking and rechecking the check box in
the Breakpoints panel of the Debug Console.
You can set breakpoints only on executable lines of code, such as assignments or
subprogram calls. There are three ways to set a breakpoint:

• By double-clicking to the left of a line of code in the PL/SQL Editor
• By right-clicking a line of code and selecting Insert/Remove Breakpoint.
• By choosing Debug > Insert/Remove breakpoint from the main menu.

Performing the same action again unsets the breakpoint. You can also remove one or all
breakpoints from the pop-up menu in the Breakpoint panel, as described previously.

Oracle Forms Developer 10g: Build Internet Applications 15-14

15-14 Copyright © 2004, Oracle. All rights reserved.

Setting Breakpoints in Stored Code

• Can set on stored program units:
– Expand Database Objects node
– Expand <schema> node
– Expand PL/SQL Stored Program Units node
– Double-click program unit
– Set breakpoint in PL/SQL Editor

• Cannot set on database triggers or stored PL/SQL
libraries

• Compile with debug information

Setting Breakpoints in Stored Code
If you are connected to the database, you can set breakpoints in stored packages,
procedures, and functions just as you do in client-side programs. To do so:

1. Expand the Database Objects node.
2. Navigate to the stored subprogram.
3. Open it in the PL/SQL Editor.

You cannot set breakpoints in database triggers or stored PL/SQL libraries.
If the program unit does not appear in a stack frame, or if you are not able to see it as you
step through its code, it has not been compiled with debug information included. There
are three methods to compile the stored program unit with debug information:

• Create the stored procedure in Forms Builder, which creates it with debugging
information.

• Use ALTER SESSION SET PLSQL_DEBUG=TRUE before creating the stored
procedure.

• Manually recompile an existing PL/SQL program unit using:
ALTER PROCEDURE <schema.procedure> COMPILE DEBUG

Oracle Forms Developer 10g: Build Internet Applications 15-15

15-15 Copyright © 2004, Oracle. All rights reserved.

Debugging Tips

• Connect to the database for SQL compilation.
• The line that fails is not always responsible.
• Watch for missing semicolons and quotation

marks.
• Define triggers at the correct level.
• Place triggers where the event will happen.

General Tips to Solve Trigger Problems
• Make sure you are connected to the (correct) database when you compile triggers

that contain SQL. Error messages can be deceiving.
• The PL/SQL Editor reports the line that fails, but the error may be due to a

dependency on an earlier line of code.
• Missing semicolons (;) and mismatched quotes are a common cause of compile

errors. Check for this if a compile error does not give an obvious indication to the
problem.

• If a trigger seems to fire too often, or on the wrong block or item in the form, check
whether it is defined at the required level. For example, a form-level When-
Validate-Item trigger fires for every changed item in the form. To check this, you
can run the form with Debug Messages on.

• For triggers that populate other items, make sure the trigger belongs to the object
where the firing event will occur, not on the items to be populated.

Oracle Forms Developer 10g: Build Internet Applications 15-16

15-16 Copyright © 2004, Oracle. All rights reserved.

Running a Form in Debug Mode

Run Form
Debug

Contains source
code and

executable run file
.FMX

(Compiles automatically)

(Runs automatically)

Runs Form in
Debug Mode on
Server specified

in Runtime
Preferences

Running a Form in Debug Mode
The Run Form Debug button in Forms Builder runs the form in debug mode. When a
breakpoint is encountered and control passes to the Debugger in Forms Builder, you can
use the debug commands to resume execution or step through the code in a variety of
ways to see how each line affects the application and the environment, as you will see
shortly.
As when you run a form from Forms Builder with the Run Form button, the Run Form
Debug button runs the form in a three-tier environment. It takes its settings from the
Preferences window that you access by choosing Edit > Preferences from the main menu
and clicking the Runtime tab.
You enter the URL for the application server that you want to run the form, which runs in
your default browser unless you specify a different browser in the Web Browser Location
text box. You can use a named configuration, if desired, with the config parameter.
Example of Application Server URL:
http://mymachine:8889/forms90/f90servlet?config=test
where test is a named section in the Forms Web configuration file(formsweb.cfg
by default) that specifies settings to use.

Oracle Forms Developer 10g: Build Internet Applications 15-17

15-17 Copyright © 2004, Oracle. All rights reserved.

Stepping Through Code

Step over

Step
out

Stop

GO

Step
into

Pause

Stepping Through Code
Once the program encounters a breakpoint, the PL/SQL Debugger enables you to step
through program units in a variety of ways in order to examine the environment as the
program progresses, using the following buttons:

• Step Into: Executes the next statement
• Step Over: Executes the next statement without stepping into a nested subprogram
• Step Out: Completes the nested subprogram and steps to the next executable

statement in the calling program
• Go: Resumes execution until the program terminates normally or is interrupted by

the next breakpoint
• Pause: Pauses the execution of running PL/SQL code to enable you to examine the

environment. For example, you could check variable values.
• Stop: Terminates debugging and program execution completely; the Debug Console

and any opened debug panels close and application execution terminates.
Another command, available from the Debug menu, is Run to Cursor. When you
insert the mouse cursor on a line of code in the PL/SQL Editor (by clicking on it), the
Run to Cursor command executes all code up to that line, then stops and marks that
line as the next executable line of code.

Oracle Forms Developer 10g: Build Internet Applications 15-18

15-18 Copyright © 2004, Oracle. All rights reserved.

Debug Example

…calls...

The results are: ??WHEN-BUTTON-
PRESSED

1

Procedure XYZ;

Function ABC;

2

3

4

5

Debug Example

Debug Example
This simple example demonstrates some of the basic features available in the debugger.
The example form consists of a single button with trigger code for the When-Button-
Pressed event. The code works as follows:

1. The trigger calls the XYZ procedure, passing it a value for the xyz_param input
parameter.

2. The XYZ procedure calls the ABC function passing it a value for the abc_param
input parameter.

PROCEDURE xyz(xyz_param IN NUMBER) IS
v_results NUMBER;

BEGIN
v_results := ABC(10);
v_results := v_results + xyz_param;
MESSAGE(‘The results are: ‘ || TO_CHAR(v_results));

END xyz;
3. The ABC function multiplies two variables and adds the result to the abc_param

input parameter.
4. The ABC function returns the result to the XYZ procedure.

Oracle Forms Developer 10g: Build Internet Applications 15-19

Debug Example (continued)
5. The XYZ procedure adds the result to the xyz_param and displays it in the console

at the bottom of the form window.
FUNCTION abc (abc_param IN NUMBER) RETURN NUMBER IS
v_total NUMBER := 0;
v_num3 NUMBER := 3;

v_num6 NUMBER := 8;
/*-- wrong value should be 6 */
BEGIN

v_total := v_num3 * v_num6;
v_total := v_total + abc_param;
RETURN v_total;

END abc;

Instructor Note
Demonstration
Open the form DebugDemo.fmb in Forms Builder to show the students how to use the
debugger.

• First run the form normally. When you click Debug Example in the form, “134”
displays at the bottom of the screen (console). However, the expected results were
“128.” The syntax must be correct because everything compiled correctly. So, there
must be something wrong in the logic of the application code within the form. The
developer needs to debug the code to find why it produced the wrong results.

• Set a breakpoint in the When-Button-Pressed trigger for Block1.push_button1 on the
executable line that calls the procedure.

• Click Run Form Debug to run the DebugDemo form in Debug mode.
• Click Debug Example in the form. The program stops at the breakpoint.
• The XYZ procedure now displays in the PL/SQL Editor, with “=>” to mark current

position at the beginning of the executable code.
• If not already displayed, bring up the Debug Console and demonstrate the

Breakpoints, Variables, and Stack panels.
• Click Step Into in the Debugger to advance into the XYZ procedure.
• Examine the Stack values for the xyz_param and v_results parameters (as

well as system variables). Everything looks normal in the xyz procedure.
• Click Step Into to enter the ABC function. Step through each of the opening

assignment statements. Find the problem in the code (v_num6 is incorrectly set to 8
instead of 6).

• Before proceeding, in the Variables panel, change the value of the variable to 6.
Then, click Go.

• Return to the form to see that the correct result of 128 is now obtained. Point out to
students that to correct the problem permanently, the PL/SQL would need to be
corrected.

In previous versions of Forms, you could change PL/SQL code on the fly in the debugger.
However, now that the debugger is integrated into Forms Builder, and the form itself is
running in a three-tier environment, this is no longer possible.
If a more complex demo is desired, open and run EMPLOYEES.fmb:

• The various buttons in this form enable you to demonstrate the Package and Break
on Exceptions windows.

• The Cause Exception button in the form causes a 1422 exception, so select that as
the exception on which to break.

Oracle Forms Developer 10g: Build Internet Applications 15-20

15-20 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The Debug Console consists of panes to view the

call stack, program variables, a user-defined
watch list, Form values, loaded PL/SQL packages,
global and system variables, and breakpoints

• You use the Run Debug button to run a form
module in debug mode within Forms Builder

• You can set breakpoints in the PL/SQL Editor by
double-clicking to the left of an executable line of
code

• The debug buttons in the Forms Builder toolbar
enable you to step through code in various ways

Summary
To debug a form from within Forms Builder, you can:

• Click Run Form Debug (compiles and runs the form automatically)
• Set breakpoints in the code
• Use various panes of the Debug Console to view aspects of the running form
• Use the debug-related toolbar buttons to step through the code

Instructor Note (continued)
• The code error in the form is that the Update Salary button does not seem to change

the salary. Set a breakpoint in the When-Button-Pressed trigger for that button. The
actual error occurs in the sal.get_sal package procedure, which is called by the
When-Button-Pressed trigger of the Update Salary button. The lines:

IF p_action = ‘UPDATE’ THEN
v_new_sal := p_old_sal;

END IF;
should be corrected to:

IF p_action = ‘UPDATE’ THEN
v_new_sal := p_old_sal + v_new_sal;

END IF;

Oracle Forms Developer 10g: Build Internet Applications 15-21

15-21 Copyright © 2004, Oracle. All rights reserved.

Practice 15 Overview

This practice covers the following topics:
• Running a form in debug mode from Forms

Builder
• Setting breakpoints
• Stepping through code
• Viewing variable values while form is running

Practice 15 Overview
In this practice session, you will run a form in debug mode from within Forms Builder, set
a breakpoint, and step through code, looking at variable values as the form runs.
Note: For solutions to this practice, see Practice 15 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 15-22

Practice 15
1. Open your CUSTGXX.FMB file. In this form, create a procedure that is called

List_Of_Values. Import code from the pr15_1.txt file:
PROCEDURE list_of_values(p_lov in VARCHAR2,p_text in
VARCHAR2) IS v_lov BOOLEAN;
BEGIN

v_lov:= SHOW_LOV(p_lov);
IF v_lov = TRUE THEN

MESSAGE('You have just selected a‘||p_text);
ELSE

MESSAGE('You have just cancelled the List of Values');
END IF;

END;
2. Modify the When-Button-Pressed trigger of

CONTROL.Account_Mgr_LOV_Button in order to call this procedure. Misspell the
parameter to pass the LOV name.

3. Compile your form and click Run Form to run it. Press the LOV button for the
Account Manager. Notice that the LOV does not display, and you receive a message
that ‘You have just cancelled the List of Values’.

4. Now click Run Form Debug. Set a breakpoint in your When-Button-Pressed trigger,
and investigate the call stack. Try stepping through the code to monitor its progress.
Look at the Variables panel to see the value of the parameters you passed to the
procedure, and the value of the p_lov variable in the procedure. How would this
information help you to figure out where the code was in error?

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to Items

Schedule: Timing Topic
40 minutes Lecture
40 minutes Practice
80 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 16-2

16-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Supplement the functionality of input items by

using triggers and built-ins
• Supplement the functionality of noninput items by

using triggers and built-ins

Introduction
Overview
In this lesson, you will learn how to use triggers to provide additional functionality to GUI items
in form applications.

Oracle Forms Developer 10g: Build Internet Applications 16-3

16-3 Copyright © 2004, Oracle. All rights reserved.

Item Interaction Triggers

When-List-Changed

When-List-Activated

When-Tree-Node-Activated

When-Tree-Node-Expanded

When-Tree-Node-Selected

When-Button-Pressed

When-Checkbox-Changed

When-Custom-Item-Event

When-Radio-Changed

When-Image-Pressed

When-Image-Activated

Item Interaction Triggers
There are several types of GUI items that the user can interact with by using the mouse or by
pressing a function key. Most of these items have default functionality. For example, by
selecting a radio button, the user can change the value of the radio group item.
You will often want to add triggers to provide customized functionality when these events occur.
For example:

• Performing tests and appropriate actions as soon as the user clicks a radio button, a list, or a
check box

• Conveniently displaying an image when the user clicks an image item
• Defining the functionality of a push-button (which has none until you define it)

Instructor Note
The When-Image-Pressed trigger fires when the user clicks the image. The
When-Image-Activated trigger fires when the user double-clicks the image. The mouse-event
triggers, When-Mouse-Click and When-Mouse-Doubleclick, may also exist within the scope of
the objects discussed here. In this case, the mouse-event triggers fire after the item interaction
trigger, when the mouse is used by the user.

Oracle Forms Developer 10g: Build Internet Applications 16-4

Item Interaction Triggers (continued)
The following triggers fire due to user interaction with an item, as previously described. They
can be defined at any scope.

Trigger Firing Event
When-Button-Pressed User clicks with mouse or uses function key to select
When-Checkbox-Changed User changes check box state by clicking or by pressing

a function key
When-Custom-Item-Event User selects or changes the value of a JavaBean

component
When-Radio-Changed User selects different button, or deselects current button,

in a radio group
When-Image-Pressed User clicks image item
When-Image-Activated User double-clicks image item
When-List-Changed User changes value of a list item
When-List-Activated User double-clicks element in a T-list
When-Tree-Node-Activated User double-clicks a node or presses [Enter] when a

node is selected
When-Tree-Node-Expanded User expands or collapses a node
When-Tree-Node-Selected User selects or deselects a node

Oracle Forms Developer 10g: Build Internet Applications 16-5

16-5 Copyright © 2004, Oracle. All rights reserved.

Coding Item Interaction Triggers

• Valid commands:
– SELECT statements
– Standard PL/SQL constructs
– All built-in subprograms

• Do not fire during:
– Navigation
– Validation (use When-Validate-“object” to code

actions to take place during validation)

Command Types in Item Interaction Triggers
You can use standard SQL and PL/SQL statements in these triggers, like the example on the next
page. However, you will often want to add functionality to items by calling built-in subprograms,
which provide a wide variety of mechanisms.
Although Forms allows you to use DML (INSERT, UPDATE, or DELETE) statements in any
trigger, it is best to use them in commit triggers only. Otherwise the DML statements are not
included in the administration kept by Forms concerning commit processing. This may lead to
unexpected and unwanted results. You learn about commit triggers in Lesson 21.
Note: During an unhandled exception, the trigger terminates and sends the Unhandled Exception
message to the operator. The item interaction triggers do not fire on navigation or validation
events.

Oracle Forms Developer 10g: Build Internet Applications 16-6

Command Types in Item Interaction Triggers (continued)
Example of When-Radio-Changed
When-Radio-Changed trigger on :CUSTOMERS.Credit_Limit. When the user changes the
credit limit, this trigger immediately confirms whether the customer has outstanding orders
exceeding the new credit limit. If so, a message warns the user.

DECLARE
n NUMBER;
v_unpaid_orders NUMBER;

BEGIN
SELECT SUM(nvl(unit_price,0)*nvl(quantity,0))

INTO v_unpaid_orders
FROM orders o, order_items i

WHERE o.customer_id = :customers.customer_id
AND o.order_id = i.order_id

-- Unpaid credit orders have status between 4 and 9
AND (o.order_status > 3 AND o.order_status < 10);
IF v_unpaid_orders > :customers.credit_limit THEN
n := SHOW_ALERT('credit_limit_alert');
END IF;

END;
Note: Displaying alerts is discussed in the next lesson.

Instructor Note
Demonstration

• Use the customers.fmb file to show the When-Radio-Changed trigger on
Credit_Limit. Run the customer.fmb file to show the functionality of the trigger.

• Use Customer ID 101, because this customer has some outstanding credit orders. Click the
Account Information tab and change the customer’s credit limit to Low. An alert displays
to warn that the new credit limit has been exceeded. You can click the Orders button to
show the customer’s outstanding orders.
Note: The data included in the common schema, used as a basis for the examples and
practices in this course, may not fit with what would exist in the real world. For example,
most customers with outstanding credit orders actually exceed their set credit limits.

• Explain the actions in the trigger code.
• We will discuss using SELECT statements in triggers in the lesson on query triggers.

Oracle Forms Developer 10g: Build Internet Applications 16-7

16-7 Copyright © 2004, Oracle. All rights reserved.

Interacting with Check Boxes

When-Checkbox-Changed
IF CHECKBOX_CHECKED('CONTROL.case_sensitive') THEN
SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

ELSE
SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',
CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);

SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',
CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);

END IF;

Defining Functionality for Input Items
You have already seen an example of adding functionality to radio groups; we now look at
adding functionality to other items that accept user input.
Check Boxes
When the user selects or clears a check box, the associated value for the state is set. You may
want to perform trigger actions based on this change. Note that the CHECKBOX_CHECKED
function enables you to test the state of a check box without needing to know the associated
values for the item.
Example
The When-Checkbox-Changed trigger (shown in the slide) on the
:CONTROL.Case_Sensitive item enables a query to be executed without regard to case if
the box is not checked.

Oracle Forms Developer 10g: Build Internet Applications 16-8

16-8 Copyright © 2004, Oracle. All rights reserved.

Changing List Items at Run Time

Triggers:
• When-List-Changed
• When-List-Activated

Built-ins:
• ADD_LIST_ELEMENT
• DELETE_LIST_ELEMENT

Excellent

Excellent

Good

Poor

Index

1

2

3

List Items
You can use the When-List-Changed trigger to trap user selection of a list value. For Tlists, you
can trap double-clicks with When-List-Activated.
With Forms Builder, you can also change the selectable elements in a list as follows:

• Periodically update the list from a two-column record group.
• Add or remove individual list elements through the ADD_LIST_ELEMENT and

DELETE_LIST_ELEMENT built-ins, respectively:
ADD_LIST_ELEMENT(’list_item_name’, index,’label’,’value’);
DELETE_LIST_ELEMENT(’list_item_name’,index);

Note: You can eliminate the Null list element of a list by setting Required to Yes.
At run time, when the block contains queried or changed records Forms may not allow you to
add or delete elements from a list item.

Parameter Description
Index Number identifying the element position in the list (top is 1)
Label The name of the element
Value The new value for the element

Oracle Forms Developer 10g: Build Internet Applications 16-9

16-9 Copyright © 2004, Oracle. All rights reserved.

Displaying LOVs from Buttons

• Uses:
– Convenient alternative for accessing LOVs
– Can display independently of text items

• Needs:
– When-Button-Pressed trigger
– LIST_VALUES or SHOW_LOV built-in

Defining Functionality for Noninput Items
Displaying LOVs from Buttons
If you have attached an LOV to a text item, then the user can invoke the LOV from the text item
by selecting Edit > Display List or pressing the List Values key.
However, it is always useful if a button is available to display an LOV. The button has two
advantages:

• It is convenient alternative for accessing the LOV.
• It displays an LOV independently of a text item (using SHOW_LOV).

There are two built-ins that you can call to invoke a LOV from a trigger. These are
LIST_VALUES and SHOW_LOV.
LIST_VALUES Procedure
This built-in procedure invokes the LOV that is attached to the current text item in the form. It
has an optional argument, which may be set to RESTRICT, meaning that the current value of the
text item is used as the initial search string on the LOV. The default for this argument is
NO_RESTRICT.

Oracle Forms Developer 10g: Build Internet Applications 16-10

Defining Functionality for Noninput Items (continued)
SHOW_LOV Function
This built-in function, without arguments, invokes the LOV of the current item. However, there
are arguments that let you define which LOV is to be displayed, and what the x and y
coordinates are where its window should appear:
SHOW_LOV(’lov_name’, x, y)
SHOW_LOV(lov_id, x, y)

You should note that either the LOV name (in quotes) or the LOV ID (without quotes) can be
supplied in the first argument.
Note: The lov_id is a PL/SQL variable where the internal ID of the object is stored. Internal
IDs are a more efficient way of identifying an object.

Instructor Note
Use LIST_VALUES with one button for each item that has an LOV.
Use SHOW_LOV with a single button for the whole form.
In both cases, set the Keyboard Navigable and Mouse Navigate properties of the button to No.

Oracle Forms Developer 10g: Build Internet Applications 16-11

16-11 Copyright © 2004, Oracle. All rights reserved.

LOVs and Buttons

IF SHOW_LOV(’myLov’)

THEN...

When-Button-Pressed

Name
Roel
Glenn
Gary
Michael
Jeff
Lynn
Kate
Patrice
Pam

ID
101
102
103
104
105
106
107
108
109

105

Employees (LOV)

105
Employee_IdLOV button

Using the SHOW_LOV Function
The SHOW_LOV function returns a Boolean value:
• TRUE indicates that the user selected a record from the LOV.
• FALSE indicates that the user dismissed the LOV without choosing a record, or that the

LOV returned 0 records from its Record Group.
Note

• You can use the FORM_SUCCESS function to differentiate between the two causes of
SHOW_LOV returning FALSE.

• Create the LOV button with a suitable label, such as “Pick,” and arrange it on the canvas
where the user intuitively associates it with the items that the LOV supports (even though
the button has no direct connection with text items). This is usually adjacent to the main
text item that the LOV returns a value to.

• You can use the SHOW_LOV function to display a LOV that is not even attached to a text
item, providing that you identify the LOV in the first argument of the function. When
called from a button, this invokes the LOV to be independent of cursor location.

Oracle Forms Developer 10g: Build Internet Applications 16-12

Using the SHOW_LOV Function (continued)
• Switch off the button’s Mouse Navigate property of the button. When using

LIST_VALUES, the cursor needs to reside in the text item that is attached to the LOV.
With SHOW_LOV, this also maintains the cursor to in its original location after the LOV is
closed, wherever that may be.

Example
This When-Button-Pressed trigger on the Customer_Lov_Button invokes an LOV in a PL/SQL
loop, until the function returns TRUE. Because SHOW_LOV returns TRUE when the user selects
a record, the LOV redisplays until they do so.
LOOP

EXIT WHEN SHOW_LOV(’customer_lov’);
MESSAGE(’You must select a value from list’);

END LOOP;

Oracle Forms Developer 10g: Build Internet Applications 16-13

16-13 Copyright © 2004, Oracle. All rights reserved.

v

^

Populating Image Items

Database

Fetch on query

Image file
(in the application server file system)

WRITE_IMAGE_FILE

READ_IMAGE_FILE

Image Items
Image items that have the Database Item property set to Yes automatically populate in response
to a query in the owning block (from a LONG RAW or BLOB column in the base table).
Nonbase table image items, however, need to be populated by other means. For example, from
an image file in the file system: READ_IMAGE_FILE built-in procedure.
You might decide to populate an image item from a button trigger, using When-Button-Pressed,
but there are two triggers that fire when the user interacts with an image item directly:

• When-Image-Pressed (fires for a single click on image item)
• When-Image-Activated (fires for a double-click on image item)

Note: The READ_IMAGE_FILE built-in procedure loads an image file from the application
server file system. If you need to load an image file from the file system on the client, use a
JavaBean.

Oracle Forms Developer 10g: Build Internet Applications 16-14

Image Items (continued)
READ_IMAGE_FILE Procedure
This built-in procedure lets you load an image file, in a variety of formats, into an image item.
READ_IMAGE_FILE(’filename’,’filetype’,’item_name’);

Note
• The filetype parameter is optional in READ_IMAGE_FILE. If you omit filetype,

you must explicitly identify the item_name parameter.
• The reverse procedure, WRITE_IMAGE_FILE, is also available.
• The WRITE_IMAGE_FILE built-in procedure writes an image file to the application

server file system. If you need to write an image file to the file system on the client, use a
JavaBean.

Parameter Description
filename Image file name (without a specified path, default path is

assumed)
filetype File type of the image (You can use ANY as a value, but it is

recommended to set a specific file type for better
performance. Refer to online Help for file types.)

item_name Name of the image item (a variable holding the Item_id is
also valid for this argument.) (This parameter is optional.)

Oracle Forms Developer 10g: Build Internet Applications 16-15

16-15 Copyright © 2004, Oracle. All rights reserved.

Loading the Right Image

READ_IMAGE_FILE

(TO_CHAR(:ORDER_ITEMS.product_id)||’.JPG’,

’JPEG’,’ORDER_ITEMS.product_image’);

READ_IMAGE_FILE

Image file
in the application server file system

Example of Image Items
The following When-Image-Pressed trigger on the Product_Image item displays a picture
of the current product (in the ITEM block) when the user clicks the image item. This example
assumes that the related filenames have the format:
<product id>.jpg.
READ_IMAGE_FILE(TO_CHAR(:ORDER_ITEMS.product_id)||'.jpg',

'JPEG', ‘ORDER_ITEMS.product_image');

Notice that as the first argument to this built-in is datatype CHAR. The concatenated NUMBER
item, product_id, must first be converted by using the TO_CHAR function.
Note: If you load an image into a base table image item by using READ_IMAGE_FILE, then its
contents will be committed to the database LONG RAW or BLOB column when you save changes
in the form. You can use this technique to populate a table with images.

Oracle Forms Developer 10g: Build Internet Applications 16-16

16-16 Copyright © 2004, Oracle. All rights reserved.

Populating Hierarchical Trees

SET_TREE_PROPERTY

Database

When-Button-Pressed

CREATE_GROUP_FROM_QUERY

Record Group

Car
Ford
Volvo
VW
Toyota

-

Populating Hierarchical Trees
The hierarchical tree displays data in the form of a standard navigator, similar to the Object
Navigator used in Oracle Forms Developer.
You can populate a hierarchical tree with values contained in a Record Group or Query Text. At
run time, you can programmatically add, remove, modify, or evaluate elements in a hierarchical
tree. You can also use the property palette to set the populate properties of the hierarchical tree.
The FTREE Package
The FTREE package contains built-ins and constants to interact with hierarchical tree items in a
form. To utilize the built-ins and constants, you must precede their names with the name of the
package.

Instructor Note
This example uses a record group to populate the tree. Developers can also use a query to
populate a hierarchical tree. The example used in the following slides is contained in the
HTreeDemo.fmb file. The HTreeDemo2.fmb file contains a more complete example, using
the data stored in the tree nodes to display details about a specific employee.

Oracle Forms Developer 10g: Build Internet Applications 16-17

Populating Hierarchical Trees (continued)
SET_TREE_PROPERTY Procedure
This built-in procedure can be used to change certain properties for the indicated hierarchical
tree item. It can also be used to populate the indicated hierarchical tree item from a record group.
Ftree.Set_Tree_Property(item_name, Ftree.property, value);

You can add data to a tree view by:
• Populating a tree with values contained in a record group or query by using the

POPULATE_TREE built-in
• Adding data to a tree under a specific node by using the ADD_TREE_DATA built-in
• Modifying elements in a tree at run time by using built-in subprograms
• Adding or deleting nodes and the data elements under the nodes

Example
This code could be used in a When-Button-Pressed trigger to initially populate the hierarchical
tree with data. The example locates the hierarchical tree first. Then, a record group is created and
the hierarchical tree is populated.
DECLARE

htree ITEM;
v_ignore NUMBER;
rg_emps RECORDGROUP;

BEGIN
htree := Find_Item('tree_block.htree3');
rg_emps := Create_Group_From_Query('rg_emps',
'select 1, level, last_name, NULL, to_char(employee_id) '
||' from employees ' ||
'connect by prior employee_id = manager_id ' ||
'start with job_id = ''AD_PRES''');
v_ignore := Populate_Group(rg_emps);
Ftree.Set_Tree_Property(htree, Ftree.RECORD_GROUP,rg_emps);

END;

Parameter Description
item_name Specifies the name of the object created at design time. The data

type of the name is VARCHAR2. A variable holding the Item_id is
also valid for this argument.

property Specifies one of the following properties:

RECORD_GROUP: Replaces the data set of the hierarchical tree
with a record group and causes it to display

QUERY_TEXT: Replaces the data set of the hierarchical tree with a
SQL query and causes it to display

ALLOW_EMPTY_BRANCHES: Possible values are
PROPERTY_TRUE and PROPERTY_FALSE

value Specifies the value appropriate to the property you are setting.

Oracle Forms Developer 10g: Build Internet Applications 16-18

16-18 Copyright © 2004, Oracle. All rights reserved.

Displaying Hierarchical Trees

When-Button-Pressed
rg_emps := create_group_from_query('rg_emps',

'select 1, level, last_name, NULL,

to_char(employee_id) ' ||

'from employees ' ||

'connect by prior employee_id = manager_id '||

'start with job_id = ''AD_PRES''');

v_ignore := populate_group(rg_emps);

ftree.set_tree_property('block4.tree5',

ftree.record_group, rg_emps);

Displaying Hierarchical Trees
The Record Group or Query
The columns in a record group or query that are used to populate a hierarchical tree are:

• Initial state: 0 (not expandable, 1 (expanded), or -1 (collapsed)
• Node tree depth: Use LEVEL pseudocolumn
• Label for the node: What the user sees
• Icon for the node: Picture displayed, if any
• Data: Actual value of the node

Oracle Forms Developer 10g: Build Internet Applications 16-19

16-19 Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

• Tell Forms about the bean: Register
• Communication from Forms to JavaBean:

– Invoke Methods
– Get/Set Properties

• Communication from JavaBean to Forms: Events

Methods
Properties
Events

Interacting with JavaBeans
In Lesson 10, you learned how to add a JavaBean to a form using the Bean Area item. The bean
that you add to a form may have a visible component on the form itself, such as a Calendar bean
that has its own button to invoke the bean. However, JavaBeans (such as the ColorPicker bean)
do not always have visible component, so you may need to create a button or other mechanism to
invoke the bean.
Regardless of whether the bean is visible in the bean area, there must be some communication
between the run-time form and the Java classes that comprise the bean. First, the form must be
made aware of the bean, either by setting its Implementation Class property at design time or by
registering the bean and its events at run time. Once the form knows about the bean, the form
communicates to the bean by:

• Invoking the methods of the bean
• Getting and setting properties of the bean

The bean communicates to the form by:
• Sending an event, such as the fact that the user selected a date or color
• Sending a list containing information needed by the form, such as what date or color was

selected
• Returning a value from an invoked method

Oracle Forms Developer 10g: Build Internet Applications 16-20

16-20 Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

The FBEAN package provides built-ins to:

• Register the bean
• Invoke methods of the

bean
• Get and set properties on

the bean
• Subscribe to bean events

Interacting with JavaBeans (continued)
The FBEAN package
The FBEAN package contains Forms built-ins that enable you to code interactions with
JavaBeans in PL/SQL, eliminating the need to know Java in order to communicate with the bean.
Many of the built-ins take some of the same arguments:

• Item Name or Item Id (obtained with the FIND_ITEM built-in): The first argument for
most of the FBEAN built-ins, referred to on the next page simply as ITEM.

• Item Instance: A reference to which instance of the item should contain the bean. This is
applicable where the Bean Area is part of a multi-row block and more than one instance of
the Bean Area is displayed. This is referred to on the next page as INSTANCE. You can
use the value ALL_ROWS (or FBEAN.ALL_ROWS) for the Item Instance value to indicate
that command should apply to all of the instances of this Bean Area in the block.
Note: This refers to the UI instance of the Bean Area, not the row number in the block. For
example, in a block with 5 rows displayed and 100 rows queried, there will be 5 instances
of the bean numbered 1 through 5, not 100 instances.

• Value: Can accept BOOLEAN, VARCHAR2, or NUMBER datatypes.

Oracle Forms Developer 10g: Build Internet Applications 16-21

Interacting with JavaBeans (continued)
The FBEAN package (continued)
Some of the built-ins in the FBEAN package are:
• GET_PROPERTY(ITEM,INSTANCE,PROPERTY_NAME)(returns VARCHAR2):

Function that retrieves the value of the specified property
• SET_PROPERTY(ITEM,INSTANCE,PROPERTY_NAME,VALUE):

Sets the specified property of the bean to the value indicated
• INVOKE(ITEM,INSTANCE,METHOD_NAME[,ARGUMENTS]):

Invokes a method on the bean, optionally passing arguments to the method
• REGISTER_BEAN(ITEM,INSTANCE,BEAN_CLASS):

Registers the bean with the form at run time, making all its exposed attributes and methods
available for the form’s bean item (The last argument is the full class name of the bean,
such as 'oracle.forms.demos.beans.ColorPicker'.)

• ENABLE_EVENT(ITEM,INSTANCE,EVENT_LISTENER_NAME,
SUBSCRIBE); the last argument is a BOOLEAN indicating whether to subscribe (TRUE)
or unsubscribe (FALSE) to the event.

Remember to precede calls to any of these built-ins with the package name and a dot, such as
FBEAN.GET_PROPERTY(…). You can pass arguments to these built-ins as either a delimited
string or as an argument list.
Deploying the Bean
Because the bean itself is a Java class or set of Java class files separate from the form module,
you need to know where to put these files. You can locate these either:

• On the middle-tier server, either in the directory structure referenced by the form applet’s
CODEBASE parameter or in the server’s CLASSPATH. CODEBASE is by default the
forms90\java subdirectory of ORACLE_HOME.

• If using JInitiator, in a JAR file in the middle-tier server’s CODEBASE directory, and
included in the ARCHIVE parameter so that the JAR file is downloaded to and cached on
the client. For example:
archive_jini=f90all_jinit.jar,colorpicker.jar

(The CODEBASE and ARCHIVE parameters are set in the formsweb.cfg file.)

Instructor Note
When the JavaBean is registered, its properties are given a name that is derived from the
JavaBean setters and getters for that property. For example, the Juggler JavaBean has a rate
property exposed through the bean methods getAnimationRate and setAnimationRate. Once the
bean is registered with FBEAN.REGISTER_BEAN, the custom property animationRate is made
available for that Bean Area item in the form.
To see all the methods and properties of the JavaBean, you can use
FBEAN.SET_LOGGING_MODE to make the information appear on the Java Console.

Oracle Forms Developer 10g: Build Internet Applications 16-22

16-22 Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

• Register a listener for the event:
FBEAN.ENABLE_EVENT('MyBeanArea',1,'mouseListener'
, true);

• When an event occurs on the bean:
– The When-Custom-Item-Event trigger fires.
– The name and information are sent to Forms in:

:SYSTEM.CUSTOM_ITEM_EVENT
:SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS

2

4
31

Interacting with JavaBeans (continued)
Responding to Events
When a user interacts with a JavaBean at run time, it usually causes an event to occur. You can
use FBEAN.ENABLE_EVENT to register a listener for the event, so that when the event occurs
Forms will fire the When-Custom-Item-Event trigger. In this trigger, you can code a response to
the event. The :SYSTEM.CUSTOM_ITEM_EVENT and
:SYSTEM.CUSTOM_EVENT_PARAMETERS variables contain the name of the event and
information the bean is sending to the form.
A typical interaction that could occur includes the following steps:

1. The user clicks the bean area for a Calendar bean. This bean area has a visible component
on the form that looks like a button. The label is set to the hire date for an employee.

2. The Calendar bean is invoked and displays a calendar initially set to the employee’s hire
date.

3. The user changes the date on the bean by picking a new month and year, then clicking on a
day, which initiates the DateChanged event.

4. The When-Custom-Item-Event trigger obtains the changed date and assigns it back to the
employee hire_date item, also changing the label on the bean area “button”.

Oracle Forms Developer 10g: Build Internet Applications 16-23

Interacting with JavaBeans (continued)
Coding a When-Custom-Item-Event Trigger
In a When-Custom-Item-Event trigger to respond to JavaBeans events, you code the action that
you want to take place when an event occurs.
For example, when a user selects a date from the Calendar bean, the DateChange event takes
place and the When-Custom-Item-Event trigger fires. In the code for the When-Custom-Item-
Event trigger on the Calendar bean area item, you need to obtain the name of the event. If it is
the DateChange event, you must obtain the new date and assign it to a form item, such as the
employee’s hire date. You can use the system variables containing the event and parameter
information:

declare
hBeanEventDetails ParamList;
eventName varchar2(80);
paramType number;
eventType varchar2(80);
newDateVal varchar2(80);
newDate date := null;

begin
hBeanEventDetails := get_parameter_list

(:system.custom_item_event_parameters);
eventName := :system.custom_item_event;
if(eventName = 'DateChange') then

get_parameter_attr(hBeanEventDetails,
'DateValue', ParamType, newDateVal);

newDate := to_date(newDateVal,'DD.MM.YYYY');
end if;
:employees.hire_date := newDate;

end;

The above example is for a bean that uses hand-coded integration. If you use the FBEAN
package to integrate the bean, the name of the value passed back to the form is always called
‘DATA’.
For example:
get_parameter_attr(:system.custom_item_event_parameters,
'DATA',paramType,eventData);
(where paramType and eventData are PL/SQL variables you declare in the When-Custom-
Item-Event trigger, like paramType and newDateVal in the preceding example).
Note: There are many examples of JavaBeans in the Forms Demos that you can download from
OTN:
http://otn.oracle.com/sample_code/products/forms/index.html

Oracle Forms Developer 10g: Build Internet Applications 16-24

16-24 Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

The JavaBean may:
• Not have a visible component
• Not communicate via events
• Return a value to the form when invoked (use like

a function)

2

4

3

1

51,255,255

Interacting with JavaBeans (continued)
Getting Values from JavaBeans without Events
Not all information from JavaBeans is obtained via events. For example, a JavaBean may return
a value when one of its methods is invoked. This value may be assigned to a PL/SQL variable or
Forms item, similarly to the way a function returns a value.
An example of this is the ColorPicker bean that you added to the Customer form in Lesson 9. It
contains a single method that returns a value, and also has no visible component in the bean area
of the form. To invoke the bean and obtain a value from it, you can use a Forms push button and
trigger with code similar to the following:

vcNewColor := FBean.Invoke_char(hColorPicker,
1,'showColorPicker','"Select color for canvas"');

The INVOKE_CHAR built-in is used to call a method that returns a VARCHAR2 value.
1. User clicks button to invoke the bean.
2. Color Picker component displays.
3. User selects a color.
4. Color value (RGB values in comma-separated list) is returned to the vcNewColor variable.

The code can then use the color value to set the canvas color.

Oracle Forms Developer 10g: Build Internet Applications 16-25

16-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can use triggers to supplement the

functionality of:
– Input items:

When-[Checkbox | Radio]-Changed
When-List-[Changed | Activated]

– Noninput items:
When-Button-Pressed
When-Image-[Pressed | Activated]
When-Tree-Node-[Activated | Expanded | Selected]
When-Custom-Item-Event

Summary
In this lesson, you should have learned to use triggers to provide functionality to the GUI items
in form applications.

• The item interaction triggers accept SELECT statements and other standard PL/SQL
constructs.

Oracle Forms Developer 10g: Build Internet Applications 16-26

16-26 Copyright © 2004, Oracle. All rights reserved.

Summary

• You can call useful built-ins from triggers:
– CHECKBOX_CHECKED
– [ADD | DELETE]_LIST_ELEMENT
– SHOW_LOV
– [READ | WRITE]_IMAGE_FILE
– FTREE: POPULATE_TREE, ADD_TREE_DATA,

[GET | SET]_TREE_PROPERTY
– FBEAN: [GET | SET]_PROPERTY, INVOKE,

REGISTER_BEAN, ENABLE_EVENT

Summary (continued)
• There are built-ins for check boxes, LOV control, list item control, image file reading,

hierarchical tree manipulation, interaction with JavaBeans, and so on.

Oracle Forms Developer 10g: Build Internet Applications 16-27

16-27 Copyright © 2004, Oracle. All rights reserved.

Practice 16 Overview

This practice covers the following topics:
• Writing a trigger to check whether the customer’s

credit limit has been exceeded
• Creating a toolbar button to display and hide

product images
• Coding a button to enable users to choose a

canvas color for a form

Practice 16 Overview
In this practice, you create some additional functionality for a radio group. You also code
interaction with a JavaBean. Finally, you add some triggers that enable interaction with buttons.

• Writing a trigger to check whether the customer’s credit limit has been exceeded
• Coding a button to enable users to choose a canvas color for a form
• Creating a toolbar button to display and hide product images

Note: For solutions to this practice, see Practice 16 in Appendix A, “Practice Solutions.”

Instructor Note
Be sure the students understand that the code they will import for this practice will only toggle
the image item. The code to display an image in the image item will be implemented in a later
practice.

Oracle Forms Developer 10g: Build Internet Applications 16-28

Practice 16
1. In the CUSTGXX form, write a trigger that fires when the credit limit changes. The trigger

should display a message warning the user if a customer’s outstanding credit orders (those
with an order status between 4 and 9) exceed the new credit limit. You can import the
pr16_1.txt file.

2. Click Run Form to run the form and test the functionality.
Hint: Most customers who have outstanding credit orders exceed the credit limits, so you
should receive the warning for most customers. (If you wish to see a list of customers and
their outstanding credit orders, run the CreditOrders.sql script in SQL*Plus.)
Customer 120 has outstanding credit orders of less than $500, so you shouldn’t receive a
warning when changing this customer’s credit limit.

3. Begin to implement a JavaBean for the ColorPicker bean area on the CONTROL block that
will enable a user to choose a color from a color picker.
Create a button on the CV_CUSTOMER canvas to enable the user to change the canvas
color using the ColorPicker bean.
Set the following properties on the button:

Label: Canvas Color Mouse Navigate: No
Keyboard Navigable: No Background color: white

The button should call a procedure named PickColor, with the imported text from the the
pr16_3.txt file.
The bean will not function at this point, but you will write the code to instantiate it in
Practice 20.

4. Save and compile the form. You will not be able to test the Color button yet, because the
bean does not function until you instantiate it in Practice 20.

5. In the ORDGXX form CONTROL block, create a new button called Image_Button and
position it on the toolbar. Set the Label property to Image Off.

6. Import the pr16_6.txt file into a trigger that fires when the Image_Button is clicked.
The file contains code that determines the current value of the visible property of the
Product Image item. If the current value is True, the visible property toggles to False for
both the Product Image item and the Image Description item. Finally, the label changes on
the Image_Button to reflect its next toggle state. However, if the visible property is
currently False, the visible property toggles to True for both the Product Image item and
the Image Description item.

7. Save and compile the form. Click Run Form to run the form and test the functionality.
Note: The image will not display in the image item at this point; you will add code to
populate the image item in Practice 20.

Copyright © 2004, Oracle. All rights reserved.

Run Time Messages and Alerts

Schedule: Timing Topic
45 minutes Lecture
20 minutes Practice
65 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 17-2

17-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the default messaging behavior of a form
• Handle run-time failure of built-in subprograms
• Identify the different types of Forms messages
• Control system messages
• Create and control alerts
• Handle database server errors

Introduction
Overview
This lesson shows you how to intercept system messages, and if desired, replace them
with ones that are more suitable for your application. You will also learn how to handle
errors by using built-in subprograms, and how to build customized alerts for
communicating with users.

Oracle Forms Developer 10g: Build Internet Applications 17-3

17-3 Copyright © 2004, Oracle. All rights reserved.

Run-Time Messages and Alerts Overview

System
Application

Alerts

Messages

Informative
Error

Working
Application

Run-Time Messages and Alerts Overview
Forms displays messages at run time to inform the operator of events that occur in the
session. As the designer, you may want to either suppress or modify some of these
messages, depending on the nature of the application.
Forms can communicate with the user in the following ways:

• Informative message: A message tells the user the current state of processing, or
gives context-sensitive information. The default display is on the message line. You
can suppress its appearance with an On-Message trigger.

• Error message: This informs the user of an error that prevents the current action.
The default display is on the message line. You can suppress message line errors
with an On-Error trigger.

• Working message: This tells the operator that the form is currently processing (for
example: Working...). This is shown on the message line. This type of message can
be suppressed by setting the system variable SUPPRESS_WORKING to True:

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Oracle Forms Developer 10g: Build Internet Applications 17-4

Run-Time Messages and Alerts Overview (continued)
• System alert: Alerts give information to the operator that require either an

acknowledgment or an answer to a question before processing can continue. This is
displayed as a modal window. When more than one message is waiting to show on
the message line, the current message also displays as an alert.

You can also build messages and alerts into your application:
• Application message: These are messages that you build into your application by

using the MESSAGE built-in. The default display is on the message line.
• Application alert: These are alerts that you design as part of your application, and

issue to the operator for a response by using the SHOW_ALERT built-in.

Instructor Note
You can point out to students that the error messages can be used to look up information
in MetaLink to help resolve errors.
The URL for MetaLink is http://metalink.oracle.com. Click MetaLink Search
and search on the error number, such as FRM-40735. You can further refine your search
by selecting the product, Oracle Forms.

Oracle Forms Developer 10g: Build Internet Applications 17-5

17-5 Copyright © 2004, Oracle. All rights reserved.

Detecting Run-Time Errors

• FORM_SUCCESS
– TRUE: Action successful
– FALSE: Error/Fatal error occurred

• FORM_FAILURE
– TRUE: A nonfatal error occurred
– FALSE: Action successful or a fatal error occurred

• FORM_FATAL
– TRUE: A fatal error occurred
– FALSE: Action successful or a nonfatal error

occurred

Built-Ins and Handling Errors
When a built-in subprogram fails, it does not directly cause an exception in the calling
trigger or program unit. This means that subsequent code continues after a built-in fails,
unless you take action to detect a failure.
Example
A button in the CONTROL block called Stock_Button is situated on the Toolbar canvas of
the ORDERS form. When clicked, this When-Button-Pressed trigger navigates to the
INVENTORIES block, and performs a query there.

GO_BLOCK(‘INVENTORIES’);
EXECUTE_QUERY;

If the GO_BLOCK built-in procedure fails because the INVENTORIES block does not
exist, or because it is nonenterable, then the EXECUTE_QUERY procedure still executes,
and attempts a query in the wrong block.

Oracle Forms Developer 10g: Build Internet Applications 17-6

Built-Ins and Handling Errors (continued)
Built-In functions for detecting success and failure
Forms Builder supplies some functions that indicate whether the latest action in the form
was successful.

Note: These built-in functions return success or failure of the latest action in the form.
The failing action may occur in a trigger that fired as a result of a built-in from the first
trigger. For example, the EXECUTE_QUERY procedure, can cause a Pre-Query trigger to
fire, which may itself fail.

Built-In Function Description of Returned Value
FORM_SUCCESS TRUE: Action successful

FALSE: Error or fatal error occurred
FORM_FAILURE TRUE: A nonfatal error occurred

FALSE: Either no error, or a fatal error
FORM_FATAL TRUE: A fatal error occurred

FALSE: Either no error, or a nonfatal error

Oracle Forms Developer 10g: Build Internet Applications 17-7

17-7 Copyright © 2004, Oracle. All rights reserved.

Errors and Built-Ins

• Built-In failure does not cause an exception.
• Test built-in success with FORM_SUCCESS function.

IF FORM_SUCCESS THEN . . .
OR IF NOT FORM_SUCCESS THEN . . .

• What went wrong?
– ERROR_CODE, ERROR_TEXT, ERROR_TYPE
– MESSAGE_CODE, MESSAGE_TEXT, MESSAGE_TYPE

Errors and Built-Ins
It is usually most practical to use FORM_SUCCESS, because this returns FALSE if either
a fatal or a nonfatal error occurs. You can then code the trigger to take appropriate action.
Example of FORM_SUCCESS
Here is the same trigger again. This time, the FORM_SUCCESS function is used in a
condition to decide if the query should be performed, depending on the success of the
GO_BLOCK action.

GO_BLOCK(’INVENTORIES’);
IF FORM_SUCCESS THEN
EXECUTE_QUERY;

ELSE
MESSAGE(’An error occurred while navigating to

Stock’);
END IF;

Triggers fail only if there is an unhandled exception or you raise the
FORM_TRIGGER_FAILURE exception to fail the trigger in a controlled manner.

Oracle Forms Developer 10g: Build Internet Applications 17-8

Errors and Built-Ins (continued)
Note: The program unit CHECK_PACKAGE_FAILURE, which is written when you build
master-detail blocks, may be called to fail a trigger if the last action was unsuccessful.
Built-in Functions to Determine the Error
When you detect an error, you may need to identify it to take a specific action. Three
more built-in functions provide this information:

These built-ins are explained in detail later in this lesson.

Built-In Function Description of Returned Value
ERROR_CODE Error num ber (datatype NUM BER)
ERROR_TEXT Error description (datatype CHAR)
ERROR_TYPE FRM =Form s Builder error, ORA=Oracle error

(datatype CHAR)

Oracle Forms Developer 10g: Build Internet Applications 17-9

17-9 Copyright © 2004, Oracle. All rights reserved.

Message Severity Levels

>25

20

15

10

5

0

25

All (default)

More critical

Define by:

:SYSTEM.MESSAGE_LEVEL

Controlling System Messages
Suppressing messages according to their severity
You can prevent system messages from being issued, based on their severity level. Forms
Builder classifies every message with a severity level that indicates how critical or trivial
the information is; the higher the numbers, the more critical the message. There are six
levels that you can affect.

Severity Level Description
0 All messages
5 Reaffirms an obvious condition
10 User has made a procedural mistake
15 User attempting action for which the form is not designed
20 Cannot continue intended action due to a trigger problem or some

other outstanding condition
25 A condition that could result in the form performing incorrectly
> 25 Messages that cannot be suppressed

Oracle Forms Developer 10g: Build Internet Applications 17-10

Controlling System Messages (continued)
Suppressing messages according to their severity (continued)
In a trigger, you can specify that only messages above a specified severity level are to be
issued by the form. You do this by assigning a value to the system variable
MESSAGE_LEVEL. Forms then only issues messages that are above the severity level
defined in this variable.
The default value for MESSAGE_LEVEL (at form startup) is 0. This means that messages
of all severities are displayed.

Oracle Forms Developer 10g: Build Internet Applications 17-11

17-11 Copyright © 2004, Oracle. All rights reserved.

Suppressing Messages

:SYSTEM.MESSAGE_LEVEL := ’5’;

UP;

IF NOT FORM_SUCCESS THEN

MESSAGE(’Already at the first Order’);

END IF;

:SYSTEM.MESSAGE_LEVEL := ’0’;

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Example of Suppressing Messages
The following When-Button-Pressed trigger moves up one record, using the built-in
procedure UP. If the cursor is already on the first record, the built-in fails and the
following message usually displays: FRM-40100: At first record.

This is a severity level 5 message. However the trigger suppresses this, and outputs its
own application message instead. The trigger resets the message level to normal (0)
afterwards.

:SYSTEM.MESSAGE_LEVEL := ’5’;
UP;
IF NOT FORM_SUCCESS THEN

MESSAGE(’Already at the first Order’);
END IF;
:SYSTEM.MESSAGE_LEVEL := ’0’;

Oracle Forms Developer 10g: Build Internet Applications 17-12

Example of Suppressing Messages (continued)
Suppressing working messages
Working messages are displayed when the Forms is busy processing an action. For
example, while querying you receive the message: Working.... You can suppress this
message by setting the system variable SUPPRESS_WORKING to True:

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Note: You can set these system variables as soon as the form starts up, if required, by
performing the assignments in a When-New-Form-Instance trigger.

Oracle Forms Developer 10g: Build Internet Applications 17-13

17-13 Copyright © 2004, Oracle. All rights reserved.

The FORM_TRIGGER_FAILURE Exception
BEGIN

-
-
RAISE form_trigger_failure;
-
-

EXCEPTION
-
-
WHEN <exception> THEN
RAISE form_trigger_failure;
-
-

Fail trigger

END;

The FORM_TRIGGER_FAILURE Exception
Triggers fail only when one of the following occurs:

• During an Unhandled Exception
• When you request the trigger to fail by raising the built-in exception

FORM_TRIGGER_FAILURE

This exception is defined and handled by Forms Builder, beyond the visible trigger text
that you write. You can raise this exception:

• In the executable part of a trigger, to skip remaining actions and fail the trigger
• In an exception handler, to fail the trigger after your own exception handling actions

have been obeyed
In either case, Forms Builder has its own exception handler for
FORM_TRIGGER_FAILURE, which fails the trigger but does not cause an unhandled
exception. This means that you can fail the trigger in a controlled manner.

Oracle Forms Developer 10g: Build Internet Applications 17-14

The FORM_TRIGGER_FAILURE Exception (continued)
Example
This example adds an action to the exception handler of the When-Validate-Item trigger
for the Customer_ID item. It raises an exception to fail the trigger when the message is
sent, and therefore traps the user in the Customer_ID item:

SELECT cust_first_name || ‘ ‘ || cust_last_name
INTO :ORDERS.customer_name
FROM CUSTOMERS
WHERE customer_id = :ORDERS.customer_id;

EXCEPTION
WHEN no_data_found THEN

MESSAGE(’Customer with this ID not found’);
RAISE form_trigger_failure;

Instructor Note
The broken line in the diagram represents possible route into the EXCEPTION section if
the designer has coded an exception handler for FORM_TRIGGER_FAILURE or
OTHERS.

Oracle Forms Developer 10g: Build Internet Applications 17-15

17-15 Copyright © 2004, Oracle. All rights reserved.

Triggers for Intercepting
System Messages

• On-Error:
– Fires when a system error message is issued
– Is used to trap Forms and Oracle Server errors, and

to customize error messages
• On-Message:

– Fires when an informative system message is
issued

– Is used to suppress or customize specific
messages

Triggers for Intercepting System Messages

By writing triggers that fire on message events you can intercept system messages before
they are displayed on the screen. These triggers are:

• On-Error: Fires on display of a system error message
• On-Message: Fires on display of an informative system message

These triggers replace the display of a message, so that no message is seen by the operator
unless you issue one from the trigger itself.
You can define these triggers at any level. For example, an On-Error trigger at item level
only intercepts error messages that occur while control is in that item. However, if you
define one or both of these triggers at form level, all messages that cause them to fire will
be intercepted regardless of which object in the current form causes the error or message.
On-Error Trigger
Use this trigger to:

• Detect Forms and Oracle Server errors. This trigger can perform corrective actions
based on the error that occurred.

• Replace the default error message with a customized message for this application.

Oracle Forms Developer 10g: Build Internet Applications 17-16

Triggers for Intercepting System Messages (continued)
Remember that you can use the built-in functions ERROR_CODE, ERROR_TEXT, and
ERROR_TYPE to identify the details of the error, and possibly use this information in
your own message.
Example of an On-Error Trigger
This On-Error trigger sends a customized message for error 40202 (field must be entered),
but reconstructs the standard system message for all other errors.

IF ERROR_CODE = 40202 THEN
MESSAGE(’You must fill in this field for an

Order’);
ELSE

MESSAGE(ERROR_TYPE || ’-’ || TO_CHAR(ERROR_CODE) ||
’: ’ ||
ERROR_TEXT);

END IF;
RAISE FORM_TRIGGER_FAILURE;

Instructor Note
Remind students that On- triggers fire in place of the usual processing.

Oracle Forms Developer 10g: Build Internet Applications 17-17

17-17 Copyright © 2004, Oracle. All rights reserved.

Handling Informative Messages

• On-Message trigger
• Built-in functions:

– MESSAGE_CODE
– MESSAGE_TEXT
– MESSAGE_TYPE

On-Message Trigger
Use this trigger to suppress informative messages, replacing them with customized
application messages, as appropriate.
You can handle messages in On-Message in a similar way to On-Error. However, because
this trigger fires due to informative messages, you will use different built-ins to determine
the nature of the current message.

Built-In Function Description of Returned Value
MESSAGE_CODE Number of informative message that would have

displayed (data type NUMBER)
MESSAGE_TEXT Text of informative message that would have displayed

(datatype CHAR)
MESSAGE_TYPE FRM=Forms Builder message

ORA=Oracle server message
NULL=No message issued yet in this session (datatype
CHAR)

Oracle Forms Developer 10g: Build Internet Applications 17-18

On-Message Trigger (continued)
Note: These functions return information about the most recent message that was issued.
If your applications must be supported in more than one national language, then use
MESSAGE_CODE in preference to MESSAGE_TEXT when checking a message.
Example of an On-Message trigger
This On-Message trigger modifies the “Query caused no records to be retrieved” message
(40350) and the “Query caused no records to be retrieved. Re-enter.” message (40301):.

IF MESSAGE_CODE in (40350,40301) THEN
MESSAGE(’No Orders found-check your search values’);

ELSE
MESSAGE(MESSAGE_TYPE || ’-’ || TO_CHAR(MESSAGE_CODE)

||: ’|| MESSAGE_TEXT);
END IF;

Oracle Forms Developer 10g: Build Internet Applications 17-19

17-19 Copyright © 2004, Oracle. All rights reserved.

Setting Alert Properties

1

2

6543 7

Alert Styles:

Caution

Stop

Note

Setting Alert Properties Example
The slide shows a generic example of an alert, showing all three icons and buttons that
can be defined.

Instructor Note
Create an alert that you can display in your application during a later demonstration. You
may want to define more than one button so that you can show the testing of user
response, as in the Delete Record example that follows.

1 Title
2 Message
3 Alert Style (Caution, Stop, Note)
4 Button1 label
5 Button2 label
6 Button3 label
7 Default Alert Button

Oracle Forms Developer 10g: Build Internet Applications 17-20

Creating and Controlling Alerts
Alerts are an alternative method for communicating with the operator. Because they
display in a modal window, alerts provide an effective way of drawing attention and
forcing the operator to answer the message before processing can continue.
Use alerts when you need to perform the following:

• Display a message that the operator cannot ignore, and must acknowledge.
• Ask the operator a question where up to three answers are appropriate (typically

Yes, No, or Cancel).
You handle the display and responses to an alert by using built-in subprograms. Alerts are
therefore managed in two stages:

• Create the alert at design-time, and define its properties in the Property palette.
• Activate the alert at run time by using built-ins, and take action based on the

operator’s returned response.
How to create an alert
Like other objects you create at design-time, alerts are created from the Object Navigator.

• Select the Alerts node in the Navigator, and then select Create.
• Define the properties of the alert in the Property Palette.

The properties that you can specify for an alert include the following:

Property Description
Name Name for this object
Title Title that displays on alert
Alert Style Symbol that displays on alert: Stop, Caution, or Note
Button1, Button2, Button3
Labels

Labels for each of the three possible buttons (Null
indicates that the button will not be displayed)

Default Alert Button Specifies which button is selected if user presses
[Enter]

Message Message that will appear in the alert – can be multiple
lines, but maximum of 200 characters

Oracle Forms Developer 10g: Build Internet Applications 17-21

17-21 Copyright © 2004, Oracle. All rights reserved.

Planning Alerts
Yes/No

questions
Yes/No/Cancel

questions

Caution
messages

Informative
messages

Planning Alerts: How Many Do You Need?
Potentially, you can create an alert for every separate alert message that you need to
display, but this is usually unnecessary. You can define a message for an alert at run time,
before it is displayed to the operator. A single alert can be used for displaying many
messages, providing that the available buttons are suitable for responding to the messages.
Create an alert for each combination of:

• Alert style required
• Set of available buttons (and labels) for operator response

For example, an application might require one Note-style alert with a single button (OK)
for acknowledgment, one Caution alert with a similar button, and two Stop alerts that each
provide a different combination of buttons for a reply. You can then assign a message to
the appropriate alert before its display, through the SET_ALERT_PROPERTY built-in
procedure.

Instructor Note
Because the properties for alert title, message, and labels for buttons can be set
dynamically at run time, a module should require no more than three generic alerts.

Oracle Forms Developer 10g: Build Internet Applications 17-22

17-22 Copyright © 2004, Oracle. All rights reserved.

Controlling Alerts

SET_ALERT_PROPERTY

SET_ALERT_BUTTON_PROPERTY

Controlling Alerts at Run Time
There are built-in subprograms to change an alert message, to change alert button labels,
and to display the alert, which returns the operator’s response to the calling trigger.
SET_ALERT_PROPERTY procedure
Use this built-in to change the message that is currently assigned to an alert. At form
startup, the default message (as defined in the Property palette) is initially assigned:

SET_ALERT_PROPERTY(’alert_name’,property,’message’)

Parameter Description
Alert_name The name of the alert as defined in Forms Builder (You can

alternatively specify an alert_id (unquoted) for this argument.)
Property The property being set (Use ALERT_MESSAGE_TEXT when

defining a new message for the alert.)
Message The character string that defines the message (You can give a

character expression instead of a single quoted string, if required.)

Oracle Forms Developer 10g: Build Internet Applications 17-23

Controlling Alerts at Run Time (continued)
SET_ALERT_BUTTON_PROPERTY procedure

Use this built-in to change the label on one of the alert buttons:
SET_ALERT_BUTTON_PROPERTY(’alert_name’, button,
property, ’value’)

Parameter Description
Alert_name The name of the alert, as defined in Forms Builder (You can

alternatively specify an alert_id (unquoted) for this argument.)
Button The number that specifies the alert button (Use ALERT_BUTTON1,

ALERT_BUTTON2, and ALERT_BUTTON3 constants.)
Property The property being set; use LABEL
Value The character string that defines the label

Oracle Forms Developer 10g: Build Internet Applications 17-24

17-24 Copyright © 2004, Oracle. All rights reserved.

SHOW_ALERT Function

IF SHOW_ALERT(’del_Check’)=ALERT_BUTTON1 THEN

. . .

Alert_Button1
Alert_Button2

Alert_Button3

SHOW_ALERT Function
SHOW_ALERT is how you display an alert at run time, and return the operator’s response
to the calling trigger:

selected_button := SHOW_ALERT(’alert_name’);
. . .

Alert_Name is the name of the alert, as defined in the builder. You can alternatively
specify an Alert_Id (unquoted) for this argument.
SHOW_ALERT returns a NUMBER constant, that indicates which of the three possible
buttons the user clicked in response to the alert. These numbers correspond to the values
of three PL/SQL constants, which are predefined by the Forms Builder:

After displaying an alert that has more than one button, you can determine which button
the operator clicked by comparing the returned value against the corresponding constants.

If the number equals… The operator selected…
ALERT_BUTTON1 Button 1
ALERT_BUTTON2 Button 2
ALERT_BUTTON3 Button 3

Oracle Forms Developer 10g: Build Internet Applications 17-25

SHOW_ALERT Function (continued)
Example
A trigger that fires when the user attempts to delete a record might invoke the alert, shown
opposite, to obtain confirmation. If the operator selects Yes, then the DELETE_RECORD
built-in is called to delete the current record from the block.

IF SHOW_ALERT(’del_check’) = ALERT_BUTTON1 THEN
DELETE_RECORD;

END IF;

Instructor Note
Demonstration
Write a trigger that displays your earlier alert.
Open the Show_Alert.fmb file that demonstrates creating a generic alert. Run the
form.

1. Set title, message, and button labels to any value you want.
2. Click the Show the Alert button.

The button number that you clicked appears in the text item.
3. Show the underlying code in this form.

Oracle Forms Developer 10g: Build Internet Applications 17-26

17-26 Copyright © 2004, Oracle. All rights reserved.

Directing Errors to an Alert

PROCEDURE Alert_On_Failure IS

n NUMBER;

BEGIN

SET_ALERT_PROPERTY(’error_alert’,

ALERT_MESSAGE_TEXT,ERROR_TYPE||

’-’||TO_CHAR(ERROR_CODE)||

’: ’||ERROR_TEXT);

n := SHOW_ALERT(’error_alert’);

END;

Directing Errors to an Alert
You may want to display errors automatically in an alert, through an
On-Error trigger. The built-in functions that return error information, such as
ERROR_TEXT, can be used in the SET_ALERT_PROPERTY procedure, to construct the
alert message for display.
Example: The following user-named procedure can be called when the last form action
was unsuccessful. The procedure fails the calling trigger and displays Error_Alert
containing the error information.

PROCEDURE alert_on_failure IS
n NUMBER;

BEGIN
SET_ALERT_PROPERTY(’error_alert’,

ALERT_MESSAGE_TEXT,
ERROR_TYPE||’-’||TO_CHAR(ERROR_CODE)||’: ’ ||
ERROR_TEXT);

n := SHOW_ALERT(’error_alert’);
END;

Note: If you want the trigger to fail, include a call to RAISE form_trigger_failure.

Oracle Forms Developer 10g: Build Internet Applications 17-27

17-27 Copyright © 2004, Oracle. All rights reserved.

Causes of Oracle Server Errors

Base table block

Implicit DML

Trigger/PU

Explicit DML

Stored PU call

Declarative
constraint

Database
trigger

Stored
program unit

Form Oracle Server

Handling Errors Raised by the Oracle Database Server
Oracle server errors can occur for many different reasons, such as violating a declarative
constraint or encountering a stored program unit error. You should know how to handle
errors that may occur in different situations.
Causes of Oracle Server Errors

Instructor Note
Demonstration: Use ServerSide.fmb to show the handling of errors originating
from a trigger, from a stored procedure, and from the database server. Click the HELP
button in the form to get instructions on running the demonstration. You can also find
instructions in ServerSideDemo.txt.

Cause Error Message
Declarative constraint Causes predefined error message
Database trigger Error message specified in

RAISE_APPLICATION_ERROR

Stored program unit Error message specified in
RAISE_APPLICATION_ERROR

Oracle Forms Developer 10g: Build Internet Applications 17-28

Handling Errors Raised by the Oracle Database Server (continued)
Types of DML statements
Declarative-constraint violations and firing of database triggers are in turn caused by
DML statements. For error-handling purposes, you must distinguish between the
following two types of DML statements:

FRM-Error messages caused by implicit DML errors
If an implicit DML statement causes an Oracle server error, Forms displays one of these
FRM-error messages:

• FRM-40508: ORACLE error: unable to INSERT record.
• FRM-40509: ORACLE error: unable to UPDATE record.
• FRM-40510: ORACLE error: unable to DELETE record.

You can use ERROR_CODE to trap these errors in an On-Error trigger and then use
DBMS_ERROR_CODE and DBMS_ERROR_TEXT to determine the ORA-error code and
message.
FRM-Error messages with Web-deployed Forms
Users may receive a generic FRM-99999 error. You can obtain meaningful information
about this error from the JInitiator Control Panel.

Type Description
Implicit DML DML statements that are associated with base table

blocks. Implicit DML is also called base table DML.
By default, Forms constructs and issues these DML
statements.

Explicit DML DML statements that a developer explicitly codes in
triggers or program units.

Oracle Forms Developer 10g: Build Internet Applications 17-29

17-29 Copyright © 2004, Oracle. All rights reserved.

Trapping Server Errors

Base table block

On-Error:
DBMS_ERROR_CODE
DBMS_ERROR_TEXT

Explicit DML/PU call

When Others:
SQLCODE
SQLERRM

Constraint

DB trigger

Stored PU

Form Oracle Server

Predefined
message

RAISE_
APPLICATION_

ERROR

RAISE_
APPLICATION_

ERROR

How to Trap Different Types of Oracle Database Server Errors

Note: Declarative-constraint violations and database triggers may be caused by both
implicit DML and explicit DML. Stored program units are always called explicitly from a
trigger or program unit.

Technical Note
The values of DBMS_ERROR_CODE and DBMS_ERROR_TEXT are the same as what a
user would see after selecting Help > Display Error; the values are not automatically reset
following successful execution.

Type Error Handling
Implicit DML Use the Forms built-ins DBMS_ERROR_CODE and

DBMS_ERROR_TEXT in an On-Error trigger.
Explicit DML Use the PL/SQL functions SQLCODE and SQLERRM in a

WHEN OTHERS exception handler of the trigger or program
that issued the DML statements.

Stored program unit Use the PL/SQL functions SQLCODE and SQLERRM in a
WHEN OTHERS exception handler of the trigger or program
that called the stored program unit.

Oracle Forms Developer 10g: Build Internet Applications 17-30

17-30 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Forms displays messages at run time to inform

the operator of events that occur in the session.
• You can use FORM_SUCCESS to test for run-time

failure of built-ins.
• There are four types of Forms messages:

– Informative
– Error
– Working
– Application

Summary
In this lesson, you should have learned how to intercept system messages, and how to
replace them with ones that are more suitable for your application. You also learned how
to build customized alerts for communicating with operators.

• Test for failure of built-ins by using the FORM_SUCCESS built-in function or other
built-in functions.

• Forms messages can be either Informative, Error, Working, or Application
messages.

Oracle Forms Developer 10g: Build Internet Applications 17-31

17-31 Copyright © 2004, Oracle. All rights reserved.

Summary

• You can control system messages with built-ins
and triggers:
– MESSAGE_LEVEL
– SUPPRESS_WORKING

– On-[Error | Message] triggers
– [ERROR | MESSAGE]_[CODE | TEXT | TYPE]

• Types of alerts: Stop, Caution, Note
• Alert built-ins:

– SHOW_ALERT
– SET_ALERT_PROPERTY
– SET_ALERT_BUTTON_PROPERTY

Summary (continued)
• Set system variables to suppress system messages:

Assign a value to MESSAGE_LEVEL to specify that only messages above a
specific severity level are to be used by the form.
Assign a value of True to SUPPRESS_WORKING to suppress all working
messages.

• On-Error and On-Message triggers intercept system error messages and informative
system messages.

• You can use the built-ins ERROR_CODE, ERROR_TEXT, ERROR_TYPE,
MESSAGE_CODE, MESSAGE_TEXT, or MESSAGE_TYPE to obtain information
about the number, text, and type of errors and messages.

• Alert types: Stop, Caution, and Note
• Up to three buttons are available for response (NULL indicates no button).
• Display alerts and change alert messages at run time with SHOW_ALERT and

SET_ALERT_PROPERTY.

Oracle Forms Developer 10g: Build Internet Applications 17-32

17-32 Copyright © 2004, Oracle. All rights reserved.

Summary

• Handle database server errors:
– Implicit DML: Use DBMS_ERROR_CODE and

DBMS_ERROR_TEXT in On-Error trigger
– Explicit DML: Use SQLCODE and SQLERRM in WHEN

OTHERS exception handler

Summary (continued)
• Intercept and handle server-side errors.

Oracle Forms Developer 10g: Build Internet Applications 17-33

17-33 Copyright © 2004, Oracle. All rights reserved.

Practice 17 Overview

This practice covers the following topics:
• Using an alert to inform the operator that the

customer’s credit limit has been exceeded
• Using a generic alert to ask the operator to

confirm that the form should terminate

Practice 17 Overview
In this practice, you create some alerts. These include a general alert for questions and a
specific alert that is customized for credit limit.

• Using an alert to inform the operator that the customer’s credit limit has been
exceeded

• Using a generic alert to ask the operator to confirm that the form should terminate
Note: For solutions to this practice, see Practice 17 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 17-34

Practice 17
1. Create an alert in CUSTGXX called Credit_Limit_Alert with one OK button. The

message should read “This customer's current orders exceed the new credit limit”.
2. Alter the When-Radio-Changed trigger on Credit_Limit to show the

Credit_Limit_Alert instead of the message when a customer’s credit limit is
exceeded.

3. Save and compile the form. Click Run Form to run the form and test the changes.
4. Create a generic alert in ORDGXX called Question_Alert that allows Yes and No

replies.
5. Alter the When-Button-Pressed trigger on CONTROL.Exit_Button to use the

Question_Alert to ask the operator to confirm that the form should terminate. (You
can import the text from pr17_4.txt.)

6. Save and compile the form. Click Run Form to run the form and test the changes.

Copyright © 2004, Oracle. All rights reserved.

Query Triggers

Schedule: Timing Topic
45 minutes Lecture
30 minutes Practice
75 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 18-2

18-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the processes involved in querying a data

block
• Describe query triggers and their scope
• Write triggers to screen query conditions
• Write triggers to supplement query results
• Control trigger action based on the form’s query

status

Introduction
Overview
In this lesson, you learn how to control events associated with queries on base table data
blocks. You can customize the query process as necessary, and supplement the results
returned by a query.

Oracle Forms Developer 10g: Build Internet Applications 18-3

18-3 Copyright © 2004, Oracle. All rights reserved.

Construct SELECT...

Perform query

Fetch a row into a new record

Mark record as valid

Validate any record changes

Abort query
on failure

Query Processing Overview

Flush
record

on failure

Fire Pre-Query trigger

Fire Post-Query trigger

Query Processing Overview
Generally, triggers are associated with a query in one of two ways:

• A trigger fires due to the query process itself.
For example: Pre-Query and Post-Query

• An event can fire a trigger in Enter-Query mode, if the Fire in Enter-Query Mode
property of the associated trigger is enabled

The query triggers, Pre-Query and Post-Query, fire due to the query process itself,
and are usually defined on the block where the query takes place.
With these triggers you can add to the normal Forms processing of records, or possibly
abandon a query before it is even executed, if the required conditions are not suitable.
Forms Query Processing
When a query is initiated on a data block, either by the operator or by a built-in
subprogram, the following major events take place:

1. In Enter-Query mode, Forms fires the Pre-Query trigger if defined.
2. If the Pre-Query succeeds, Forms constructs the query SELECT statement, based on

any existing criteria in the block (either entered by the operator or by the Pre-
Query).

Oracle Forms Developer 10g: Build Internet Applications 18-4

Query Processing Overview (continued)
3. The query is performed.
4. Forms fetches the column values of a row into the base table items of a new record

in the block.
5. The record is marked Valid.
6. Forms fires the Post-Query trigger. If it fails, this record is flushed from the

block.
7. Forms performs item and record validation if the record has changed (due to a

trigger).
8. Steps 4 through 7 are repeated for any remaining records of this query.

Oracle Forms Developer 10g: Build Internet Applications 18-5

18-5 Copyright © 2004, Oracle. All rights reserved.

SELECT Statements Issued During
Query Processing

SELECT base_column, ..., ROWID

INTO :base_item, ..., :ROWID

FROM base_table

WHERE (default_where_clause OR

onetime_where_clause)

AND (example_record_conditions)

AND (query_where_conditions)

ORDER BY default_order_by_clause |

query_where_order_by

Slightly different for COUNT

SELECT Statements Issued During Query Processing

If you have not altered default query processing, Forms issues a SELECT statement when
you want to retrieve or count records.

SELECT base_column, base_column, ... , ROWID
INTO :base_item, :base_item, ... , :ROWID
FROM base_table
WHERE (default_where_clause OR onetime_where_clause)
AND (example_record_conditions)
AND (query_where_conditions)
ORDER BY default_order_by_clause | query_where_order_by

SELECT COUNT(*)
FROM base_table
WHERE (default_where_clause OR onetime_where_clause)
AND (example_record_conditions)
AND (query_where_conditions)
ORDER BY default_order_by_clause | query_where_order_by

Oracle Forms Developer 10g: Build Internet Applications 18-6

SELECT Statements Issued During Query Processing (continued)

Note: The vertical bar (|) in the ORDER BY clause indicates that either of the two
possibilities can be present. Forms retrieves the ROWID only when the Key Mode block
property is set to Unique (the default). The entire WHERE clause is optional. The ORDER
BY clause is also optional.

If you want to count records that satisfy criteria specified in the Query/Where dialog box,
enter one or more variables in the example record and press Count Query.

Oracle Forms Developer 10g: Build Internet Applications 18-7

18-7 Copyright © 2004, Oracle. All rights reserved.

WHERE Clause

• Four sources for the WHERE clause:
– WHERE Clause block property
– ONETIME_WHERE block property
– Example Record
– Query/Where dialog box

• WHERE clauses are combined by the AND operator,
except that WHERE and ONETIME_WHERE are
combined with the OR operator.

WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses of a default base table SELECT statement are derived
from several sources. It is important to know how different sources interact.
Four sources for the WHERE clause

• The WHERE Clause block property (set in Forms Builder, or by setting the
DEFAULT_WHERE_CLAUSE property programmatically)

• The ONETIME_WHERE block property (set programmatically)
• Example Record
• Query/Where dialog box

If more than one source is present, the different conditions will all be used and linked with
an AND operator. If the WHERE clause and the ONETIME_WHERE clause are present, only
one is used: the ONETIME_WHERE clause for the first execution of the query, and the
WHERE clause for subsequent executions.

Oracle Forms Developer 10g: Build Internet Applications 18-8

18-8 Copyright © 2004, Oracle. All rights reserved.

ONETIME_WHERE Property

Initially shows
restricted query

2nd Execute_Query
not restricted

WHERE and ORDER BY Clauses (continued)
ONETIME_WHERE property:
For instances where you want to restrict the query only once, you can programmatically
set the ONETIME_WHERE property on a block. This specifies a WHERE clause for the
block that will be in effect only for the first query issued on the block after setting that
property.
Example:
From the ORDER_ITEMS block, you want to display the INVENTORIES block, which is
on a separate window. When the block is initially displayed, it should present information
about the stock of the product selected in the ORDER_ITEMS block. However, once this
initial information is displayed, you want users to be able to query the stock of any
product. You accomplish this by coding the Stock button to set the ONETIME_WHERE
property:

Set_Block_Property('INVENTORIES', ONETIME_WHERE,
'product_id = '||:ORDER_ITEMS.PRODUCT_ID);

Go_block('INVENTORIES');
Execute_Query;

Oracle Forms Developer 10g: Build Internet Applications 18-9

18-9 Copyright © 2004, Oracle. All rights reserved.

ORDER BY Clause

• Two sources for the ORDER BY clause:
– ORDER BY Clause block property
– Query/Where dialog box

• Second source for ORDER BY clause overrides the
first one

WHERE and ORDER BY Clauses (continued)
Two sources for the ORDER BY clause
• ORDER BY Clause block property
• Query/Where dialog box

An ORDER BY clause specified in the Query/Where dialog box overrides the value of the
ORDER BY Clause block property.
Note: You can use the SET_BLOCK_PROPERTY built-in to change the WHERE Clause
and ORDER BY Clause block properties at run time.

Oracle Forms Developer 10g: Build Internet Applications 18-10

18-10 Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers: Pre-Query Trigger

• Defined at block level
• Fires once, before query is performed

IF TO_CHAR(:ORDERS.ORDER_ID)||

TO_CHAR(:ORDERS.CUSTOMER_ID)

IS NULL THEN

MESSAGE(’You must query by

Order ID or Customer ID’);

RAISE form_trigger_failure;

END IF;

Writing Query Triggers: Pre-Query Trigger
You must define this trigger at block level or above. It fires for either a global or restricted
query, just before Forms executes the query. You can use Pre-Query to:

• Test the operator’s query conditions, and to fail the query process if the conditions
are not satisfactory for the application

• Add criteria for the query by assigning values to base table items
Example
The Pre-Query trigger on the ORDERS block shown above permits queries only if there is
a restriction on either the Order ID or Customer ID. This prevents very large queries.
Note: Pre-Query is useful for assigning values passed from other Oracle Forms Developer
modules, so that the query is related to data elsewhere in the session. You will learn how
to do this in a later lesson.

Instructor Note
With a restricted query, this trigger code can cause an error. For example, entering >10 for
the ID item causes an error because the TO_CHAR in the trigger code around the ID item.
Using NAME_IN in the code ensures that the correct datatype is used.

Oracle Forms Developer 10g: Build Internet Applications 18-11

18-11 Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers:
Post-Query Trigger

• Fires for each fetched record (except during array
processing)

• Use to populate nondatabase items and calculate
statistics

SELECT COUNT(order_id)

INTO :ORDERS.lineitem_count

FROM ORDER_ITEMS

WHERE order_id = :ORDERS.order_id;

Writing Query Triggers: Post-Query Trigger
This trigger is defined at block level or above. Post-Query fires for each record that is
fetched into the block as a result of a query. Note that the trigger fires only on the initial
fetch of a record, not when a record is subsequently scrolled back into view a second or
third time.
Use Post-Query as follows:

• To populate nondatabase items as records are returned from a query
• To calculate statistics

Example
The Post-Query trigger on the ORDERS block, shown above, selects the total count of line
items for the current Order, and displays this number as a summary value in the nonbase
table item :Lineitem_count.

Oracle Forms Developer 10g: Build Internet Applications 18-12

18-12 Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers:
Using SELECT Statements in Triggers

• Forms Builder variables are preceded by a colon.
• The query must return one row for success.
• Code exception handlers.
• The INTO clause is mandatory, with a variable for

each selected column or expression.
• ORDER BY is not relevant.

Writing Query Triggers: Using SELECT Statements in Triggers
The previous trigger example populates the Lineitem_Count item through the INTO
clause. Again, colons are required in front of Forms Builder variables to distinguish them
from PL/SQL variables and database columns.
Here is a reminder of some other rules regarding SELECT statements in PL/SQL:

• A single row must be returned from the query, or else an exception is raised that
terminates the normal executable part of the block. You usually want to match a
form value with a unique column value in your restriction.

• Code exception handlers in your PL/SQL block to deal with possible exceptions
raised by SELECT statements.

• The INTO clause is mandatory, and must define a receiving variable for each
selected column or expression. You can use PL/SQL variables, form items or global
variables in the INTO clause.

• ORDER BY and other clauses that control multiple-row queries are not relevant
(unless they are part of an Explicit Cursor definition).

Oracle Forms Developer 10g: Build Internet Applications 18-13

18-13 Copyright © 2004, Oracle. All rights reserved.

Query Array Processing

• Reduces network traffic
• Enables Query Array processing:

– Enable Array Processing option
– Set Query Array Size property

• Query Array Size property
• Query All Records property

Query Array Processing
The default behavior of Forms is to process records one at a time. With array processing, a
structure (array) containing multiple records is sent to or returned from the server for
processing.
Forms supports both array fetch processing and array DML processing. For both querying
and DML operations, you can determine the array size to optimize performance for your
needs. This lesson focuses on array query processing.
Enabling Array processing for queries

1. Setting preferences:
Select Edit > Preferences.
Click the Runtime tab.
Select the Array Processing check box.

2. Setting properties:
In the Object Navigator, select the Data Blocks node.
Double-click the Data Blocks icon to display the Property Palette.
Under the Records category, set the Query Array Size property to a number
that represents the number of records in the array for array processing.

Oracle Forms Developer 10g: Build Internet Applications 18-14

Query Array Processing (continued)
Query Array Size Property: This property specifies the maximum number of records
that Forms should fetch from the database at one time. If set to zero, the query array size
defaults to the number of records displayed in the block.
A size of 1 provides the fastest perceived response time, because Forms fetches and
displays only one record at a time. By contrast, a size of 10 fetches up to ten records
before displaying any of them, however, the larger size reduces overall processing time by
making fewer calls to the database for records.
Query All Records Property: Specifies whether all the records matching the query
criteria should be fetched into the data block when a query is executed.

• Yes: Fetches all records from query.
• No: Fetches the number of records specified by the Query Array Size block

property.

Oracle Forms Developer 10g: Build Internet Applications 18-15

18-15 Copyright © 2004, Oracle. All rights reserved.

Coding Triggers for
Enter-Query Mode

• Some triggers may fire in Enter-Query mode.
• Set the Fire in Enter-Query Mode property.
• Test mode during execution with :SYSTEM.MODE

– NORMAL
– ENTER-QUERY
– QUERY

Coding Triggers for Enter-Query Mode
Some triggers that fire when the form is in Normal mode (during data entry and saving)
may also be fired in Enter-Query mode. You need to consider the trigger type and actions
in these cases.
Fire in Enter-Query Mode property
This property determines whether Forms fires a trigger if the associated event occurs in
Enter-Query mode. Not all triggers can do this; consult Forms Builder online Help, which
lists each trigger and whether this property can be set.
By default, the Fire in Enter-Query Mode property is set to Yes for triggers that accept
this. Set it to No in the Property Palette if you only want the trigger to fire in Normal
mode.

Oracle Forms Developer 10g: Build Internet Applications 18-16

Coding Triggers for Enter-Query Mode (continued)
Example
If you provide a button for the operator to invoke an LOV, and the LOV is required to
help with query criteria as well as data entry, then the When-Button-Pressed trigger
should fire in both modes. This trigger has Fire in Enter-Query Mode set to Yes (default
for this trigger type):

IF SHOW_LOV(’Customers’) THEN
MESSAGE(’Selection successful’);

END IF;

To create a trigger that fires in Enter-Query mode, perform the following steps:
• In the Object Navigator, select a trigger.
• In the Property Palette, set the Fire in Enter-Query Mode property to Yes.

Instructor Note
The following triggers may fire in Enter-Query mode:

• Key-
• On-Error
• On-Message
• When- triggers, except:

When-Database-Record
When-Image-Activated
When-New-Block-Instance
When-New-Form-Instance
When-Create-Record
When-Remove-Record
When-Validate-Record
When-Validate-Item

Oracle Forms Developer 10g: Build Internet Applications 18-17

18-17 Copyright © 2004, Oracle. All rights reserved.

Coding Triggers for
Enter-Query Mode

• Example

• Some built-ins are illegal.
• Consult online Help.
• You cannot navigate to another record in the

current form.

IF :SYSTEM.MODE = ’NORMAL’

THEN ENTER_QUERY;

ELSE EXECUTE_QUERY;

END IF;

Coding Triggers for Enter-Query Mode (continued)
Finding out the current mode
When a trigger fires in both Enter-Query mode and Normal modes, you may need to know
the current mode at execution time for the following reasons:

• Your trigger needs to perform different actions depending on the mode.
• Some built-in subprograms cannot be used in Enter-Query mode.

The read-only system variable, MODE, stores the current mode of the form. Its value
(always upper case) is one of the following:

Value of :SYSTEM.MODE Definition
NORMAL Form is in Normal processing mode.
ENTER-QUERY Form is in Enter Query mode.
QUERY Form is in Fetch-processing mode, meaning that

Forms is currently performing a fetch. (For example,
this value always occurs in a Post-Query trigger.)

Oracle Forms Developer 10g: Build Internet Applications 18-18

Coding Triggers for Enter-Query Mode (continued)
Example
Consider the following When-Button-Pressed trigger for the Query button.
If the operator clicks the button in Normal mode, then the trigger places the form in Enter-
Query mode (using the ENTER_QUERY built-in). Otherwise, if already in Enter-Query
mode, the button executes the query (using the EXECUTE_QUERY built-in).

IF :SYSTEM.MODE = ’NORMAL’ THEN
ENTER_QUERY;

ELSE
EXECUTE_QUERY;

END IF;

Using built-ins in Enter-Query Mode
Some built-in subprograms are illegal if a trigger is executed in Enter-Query mode. Again,
consult the Forms Builder online Help which specifies whether an individual built-in can
be used in this mode.
One general restriction is that in Enter-Query mode you can not navigate to another record
in the current form. So any built-in that would potentially enable this is illegal. These
include GO_BLOCK, NEXT_BLOCK, PREVIOUS_BLOCK, GO_RECORD,
NEXT_RECORD, PREVIOUS_RECORD, UP, DOWN, OPEN_FORM, and others.

Oracle Forms Developer 10g: Build Internet Applications 18-19

18-19 Copyright © 2004, Oracle. All rights reserved.

Overriding Default Query Processing

Do-the-Right-Thing Built-in

COUNT_QUERY

FETCH_RECORDS

SELECT_RECORDS

Trigger

On-Close

On-Count

On-Fetch

Pre-Select

On-Select

Post-Select

Additional Transactional Triggers for Query Processing

Overriding Default Query Processing
You can use certain transactional triggers to replace default commit processing. Some of
the transactional triggers can also be used to replace default query processing.
You can call “Do-the-right-thing” built-ins from transactional triggers to augment default
query processing. The “Do-the-right-thing” built-ins perform the same actions as the
default processing would. You can then supplement the default processing with your own
code.

Oracle Forms Developer 10g: Build Internet Applications 18-20

18-20 Copyright © 2004, Oracle. All rights reserved.

Overriding Default Query Processing

• On-Fetch continues to fire until:
– It fires without executing

CREATE_QUERIED_RECORD.
– The query is closed by the user or by ABORT_QUERY.
– It raises FORM_TRIGGER_FAILURE.

• On-Select replaces open cursor, parse, and
execute phases.

Overriding Default Query Processing (continued)
Using Transactional Triggers for Query Processing
Transactional triggers for query processing are primarily intended to access certain data
sources other than Oracle. However, you can also use these triggers to implement special
functionality by augmenting default query processing against an Oracle database.

Instructor Note
When the CREATE_QUERIED_RECORD built-in is called from an On-Fetch trigger, it
creates a record on the block waiting list. The waiting list is an intermediary record buffer
that contains records that have been fetched from the data source, but have not yet been
placed on the block list of active records. This built-in is included primarily for
applications using transactional triggers to run against a data source other than Oracle.

Oracle Forms Developer 10g: Build Internet Applications 18-21

Overriding Default Query Processing (continued)
Transactional Triggers for query processing have the following characteristics:

Trigger Characteristic
On-Close Fires when Forms closes a query (It augments, rather than replaces,

default processing.)
On-Count Fires when Forms would usually perform default Count Query

processing to determine the number of rows that match the query
conditions.

On-Fetch Fires when Forms performs a fetch for a set of rows (You can use
the CREATE_QUERIED_RECORD built-in to create queried records
if you want to replace default fetch processing.) The trigger
continues to fire until:

• No queried records are created during a single execution of
the trigger

• The query is closed by the user or by the ABORT_QUERY
built-in executed from another trigger

• The trigger raises FORM_TRIGGER_FAILURE
Pre-Select Fires after Forms has constructed the block SELECT statement

based on the query conditions, but before it issues this statement
On-Select Fires when Forms would usually issue the block SELECT statement

(The trigger replaces the open cursor, parse, and execute phases of a
query.)

Post-Select Fires after Forms has constructed and issued the block SELECT
statement, but before it fetches the records

Oracle Forms Developer 10g: Build Internet Applications 18-22

18-22 Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• SYSTEM.MODE
• SYSTEM.LAST_QUERY

– Contains bind variables (ORD_ID = :1) before
SELECT_RECORDS

– Contains actual values (ORD_ID = 102) after
SELECT_RECORDS

Obtaining Query Information at Run Time
You can use system variables and built-ins to obtain information about queries.
Using SYSTEM.MODE
Use the SYSTEM.MODE system variable to obtain the form mode. The three values are
NORMAL, ENTER_QUERY, and QUERY. This system variable was discussed previously in
this lesson.
Using SYSTEM.LAST_QUERY
Use SYSTEM.LAST_QUERY to obtain the text of the base-table SELECT statement that
was last executed by Forms. If a user has entered query conditions in the Example Record,
the exact form of the SELECT statement depends on when this system variable is used.
If the system variable is used before Forms has implicitly executed the
SELECT_RECORDS built-in, the SELECT statement contains bind variables (for
example, ORDER_ID=:1). If used after Forms has implicitly executed the
SELECT_RECORDS built-in, the SELECT statement contains the actual search values
(for example, ORDER_ID=102). The system variable contains bind variables during the
Pre-Select trigger and actual search values during the Post-Select trigger.
Unlike most system variables, SYSTEM.LAST_QUERY may contain a mixture of upper
and lower case.

Oracle Forms Developer 10g: Build Internet Applications 18-23

18-23 Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• GET_BLOCK_PROPERTY
SET_BLOCK_PROPERTY
– Get and set:

DEFAULT_WHERE
ONETIME_WHERE
ORDER_BY
QUERY_ALLOWED
QUERY_HITS

– Get only:
QUERY_OPTIONS
RECORDS_TO_FETCH

Obtaining Query Information at Run Time (continued)
Using GET_BLOCK_PROPERTY and SET_BLOCK_PROPERTY
The following block properties may be useful for obtaining query information. Only the
properties marked with an asterisk can be set.
• DEFAULT_WHERE (*)
• ONETIME_WHERE (*)
• ORDER_BY (*)
• QUERY_ALLOWED (*)
• QUERY_HITS (*)
• QUERY_OPTIONS
• RECORDS_TO_FETCH

Oracle Forms Developer 10g: Build Internet Applications 18-24

18-24 Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• GET_ITEM_PROPERTY
• SET_ITEM_PROPERTY

– Get and set:
CASE_INSENSITIVE_QUERY
QUERYABLE
QUERY_ONLY

– Get only:
QUERY_LENGTH

Obtaining Query Information at Run Time (continued)
Using GET_ITEM_PROPERTY and SET_ITEM_PROPERTY
The following item properties may be useful for getting query information. Only the
properties marked with an asterisk can be set.
• CASE_INSENSITIVE_QUERY (*)
• QUERYABLE (*)
• QUERY_ONLY (*)
• QUERY_LENGTH

Instructor Note
QUERYABLE determines if the item can be included in a query against the base table of
the block to which the item belongs.
QUERY_ONLY specifies that an item can be queried but that it should not be included in
any INSERT or UPDATE statement that Forms issues for the block at run time.

Oracle Forms Developer 10g: Build Internet Applications 18-25

18-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Query processing includes the following steps:

1. Pre-Query trigger fires
2. SELECT statement constructed
3. Query performed
4. Record fetched into block
5. Record marked Valid
6. Post-Query trigger fires
7. Item and record validation if the record has

changed (due to a trigger)
8. Steps 4 through 7 repeat till all fetched

Summary
In this lesson, you learned how to control the events associated with queries on base table
blocks.

• The query process: Prior to beginning the query, the Pre-Query trigger fires once
for each query. Then the query statement is constructed and executed. For each
record retrieved by the query, the record is fetched into the block and marked as
valid, the Post-Query trigger fires for that record, and item and record validation
occurs if a trigger has changed the record.

Oracle Forms Developer 10g: Build Internet Applications 18-26

18-26 Copyright © 2004, Oracle. All rights reserved.

Summary

• The query triggers, which must be defined at block
or form level, are:
– Pre-Query: Use to screen query conditions (set

ONETIME_WHERE or DEFAULT_WHERE properties, or
assign values to use as query criteria)

– Post-Query: Use to supplement query results
(populate nonbase table items, perform
calculations)

• You can use transactional triggers to override
default query processing.

• You can control trigger action based on the form’s
query status by checking SYSTEM.MODE values:
NORMAL, ENTER-QUERY, or QUERY

Summary (continued)
• The Pre-Query trigger fires before the query executes. This trigger is defined at the

block level or above. Use the Pre-Query trigger to check or modify query conditions.
• The Post-Query trigger fires as each record is fetched (except array processing). This

trigger is defined at the block level or above. Use the Post-Query trigger to perform
calculations and populate additional items.

• Some triggers can fire in both Normal and Enter-Query modes.
Use SYSTEM.MODE to test the current mode.
Some built-ins are illegal in Enter-Query mode.

• Override default query processing by using transactional triggers; to replace the
default functionally, use “Do-the-right-thing” built-ins.

• Obtain query information at run-time by using:
SYSTEM.MODE, SYSTEM.LAST_QUERY
Some properties of GET/SET_BLOCK_PROPERTY and
GET/SET_ITEM_PROPERTY

Oracle Forms Developer 10g: Build Internet Applications 18-27

18-27 Copyright © 2004, Oracle. All rights reserved.

Practice 18 Overview

This practice covers the following topics:
• Populating customer names and sales

representative names for each row of the ORDERS
block

• Populating descriptions for each row of the
ORDER_ITEMS block

• Restricting the query on the INVENTORIES block
for only the first query on that block

• Disabling the effects of the Exit button and
changing a radio group in Enter-Query mode

• Adding two check boxes to enable case-sensitive
and exact match query

Practice 18 Overview
In this practice, you create two query triggers to populate nonbase table items. You will
also change the default query interface to enable case-sensitive and exact match query.

• Populating customer names and sales representative names for each row of the
ORDERS block

• Populating descriptions for each row of the ORDER_ITEMS block
• Restricting the query on the INVENTORIES block for only the first query on that

block
• Disabling the effect of the Exit button and changing a radio group in Enter-Query

mode
• Adding two check boxes to the Customers form to enable case-sensitive and exact

match query
Note: For solutions to this practice, see Practice 18 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 18-28

Practice 18
1. In the ORDGXX form, write a trigger that populates the Customer_Name and the

Sales_Rep_Name for every row fetched by a query on the ORDERS block. You can
import the text from pr18_1.txt.

2. Write a trigger that populates the Description for every row fetched by a query on
the ORDER_ITEMS block. You can import the text from pr18_2.txt.

3. Change the When-Button-Pressed trigger on the Stock_Button in the CONTROL
block so that users will be able to execute a second query on the INVENTORIES
block that is not restricted to the current Product_ID in the ORDER_ITEMS block.
You can import the text from pr18_3.txt.

4. Ensure that the Exit_Button has no effect in Enter-Query mode.
5. Click Run Form to run the form and test it.
6. Open the CUSTGXX form module. Adjust the default query interface. Add a check

box called CONTROL.Case_Sensitive to the form so that the user can specify
whether or not a query for a customer name should be case sensitive. Place the
check box on the Name page of the TAB_CUSTOMER canvas. You can import the
pr18_6.txt file into the
When-Checkbox-Changed trigger. Set the initial value property to Y, and the
Checked/Unchecked properties to Y and N.
Set the Mouse Navigate property to No.

7. Add a check box called CONTROL.Exact_Match to the form so that the user can
specify whether or not a query condition for a customer name should exactly match
the table value. (If a nonexact match is allowed, the search value can be part of the
table value.) Set the label to: Exact match on query?
Set the initial value property to Y, and the Checked/Unchecked properties to Y and
N. Set the Mouse Navigate property to No. You can import the pr18_7.txt file
into the Pre-Query Trigger.

8. Ensure that the When-Radio-Changed trigger for the Credit_Limit item does not fire
when in Enter-Query mode.

9. Click Run Form to run the form and test the changes.

Copyright © 2004, Oracle. All rights reserved.

Validation

Schedule: Timing Topic
35 minutes Lecture
30 minutes Practice
65 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 19-2

19-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the effects of the validation unit upon a

form
• Control validation:

– Using object properties
– Using triggers
– Using Pluggable Java Components

• Describe how Forms tracks validation status
• Control when validation occurs

Introduction
Overview
In this lesson, you will learn how to supplement item validation by using both object
properties and triggers. You will also learn to control when validation occurs.

Oracle Forms Developer 10g: Build Internet Applications 19-3

19-3 Copyright © 2004, Oracle. All rights reserved.

The Validation Process

Forms validates at the following levels:

Form level

Block level

Record level Item level

Validation Process
Validation Levels
Forms performs a validation process at several levels to ensure that records and individual
values follow appropriate rules. If validation fails, then control is passed back to the
appropriate level, so that the operator can make corrections. Validation occurs at:

• Item level: Forms records a status for each item to determine whether it is currently
valid. If an item has been changed and is not yet marked as valid, then Forms first
performs standard validation checks to ensure that the value conforms to the item’s
properties. These checks are carried out before firing any When-Validate-Item
triggers that you have defined. Standard checks include the following:

Format mask
Required (if so, then is the item null?)
Data type
Range (Lowest-Highest Allowed Value)
Validate from List (see later in this lesson)

Oracle Forms Developer 10g: Build Internet Applications 19-4

19-4 Copyright © 2004, Oracle. All rights reserved.

The Validation Process

Validation occurs when:
• [Enter] key or ENTER Built-in is

obeyed
• Operator or trigger leaves the validation unit

(includes a Commit)

Validation Process (continued)
• Record level: After leaving a record, Forms checks to see whether the record is

valid. If not, then the status of each item in the record is checked, and a When-
Validate-Record trigger is then fired, if present. When the record passes these
checks, it is set to valid.

• Block and form level: At block or form level, all records below that level are
validated. For example, if you commit (save) changes in the form, then all records in
the form are validated, unless you have suppressed this action.

When does Validation Occur?
Forms carries out validation for the validation unit under the following conditions:

• The [Enter] key is pressed or the ENTER built-in procedure is run. The purpose
of the ENTER built-in is to force validation immediately.
Note: The ENTER action is not necessarily mapped to the key that is physically
labeled Enter.

• The operator or a trigger navigates out of the validation unit. This includes when
changes are committed. The default validation unit is item, but can also be set to
record, block, or form by the designer. The validation unit is discussed in the next
section.

Oracle Forms Developer 10g: Build Internet Applications 19-5

19-5 Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Properties:
Validation Unit

Using Object Properties to Control Validation
You can control when and how validation occurs in a form, even without triggers. Do this
by setting properties for the form and for individual items within it.
The Validation Unit
The validation unit defines the maximum amount of data an operator can enter in the form
before Forms initiates validation. Validation unit is a property of the form module, and it
can be set in the Property Palette to any of the following:

• Default
• Item
• Record
• Block
• Form

The default setting is item level. The default setting is usually chosen.
In practice, an item-level validation unit means that Forms validates changes when an
operator navigates out of a changed item. This way, standard validation checks and firing
the When-Validate-Item trigger of that item can be done immediately. As a result,
operators are aware of validation failure as soon as they attempt to leave the item.

Oracle Forms Developer 10g: Build Internet Applications 19-6

Using Object Properties to Control Validation (continued)
At higher validation units (record, block, or form level), the above checks are postponed
until navigation moves out of that unit. All outstanding items and records are validated
together, including the firing of When-Validate-Item and
When-Validate-Record triggers.
You might set a validation unit above item level under one of the following conditions:

• Validation involves database references, and you want to postpone traffic until the
operator has completed a record (record level).

• The application runs on the Internet and you want to improve performance by
reducing round trips to the application server.

Instructor Note
Show the Validation Unit property in Forms Builder. You may want to set Validation Unit
to a higher level, and demonstrate its effect at run time.

Oracle Forms Developer 10g: Build Internet Applications 19-7

19-7 Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Properties:
Validate from List

LOV

TERRY
Full list

MART
Partial list

Valid

Auto complete
AL

ALAN

HDATE

20-FEB-1981
22-FEB-1981
06-MAR-1996
06-FEB-1995

08-SEP-1981

ENAME

MARTIN
MARTINEZ
SEDAT
WARD

ALAN

WARD

Using LOVs for Validation
When you attach an LOV to a text item by setting the LOV property of the item, you can
optionally use the LOV contents to validate data entered in the item.
The Validate from List Property
Do this by setting the Validate from List property to Yes for the item. At validation time,
Forms then automatically uses the item value as a non case-sensitive search string on the
LOV contents. The following events then occur, depending on the circumstances:

• If the value in the text item matches one of the values in the first column of the
LOV, validation succeeds, the LOV is not displayed, and processing continues
normally.

• If the item’s value causes a single record to be found in the LOV, but is a partial
value of the LOV value, then the full LOV column value is returned to the item
(providing that the item is defined as the return item in the LOV). The item then
passes this validation phase.

• If the item value causes multiple records to be found in the LOV, Forms displays the
LOV and uses the text item value as the search criteria to automatically reduce the
list, so that the operator must choose.

• If no match is found, then the full LOV contents are displayed to the operator.

Oracle Forms Developer 10g: Build Internet Applications 19-8

Using LOVs for Validation (continued)
Note: Make sure that LOVs you create for validation purposes have the validation column
defined first, with a display width greater than 0. You also need to define the Return Item
for the LOV column as the item being validated.
For performance reasons, do not use the LOV for Validation property for large LOVs.

Instructor Note
Set the Validate from List property on an item to which you have already attached a
suitable LOV. Then, build and run the form to show the use of this feature.

Oracle Forms Developer 10g: Build Internet Applications 19-9

19-9 Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Triggers

• Item level:
When-Validate-Item

• Block level:
When-Validate-Record

IF :ORDERS.order_date > SYSDATE THEN

MESSAGE(Order Date is later than today!’);

RAISE form_trigger_failure;

END IF;

Controlling Validation by Using Triggers
There are triggers that fire due to validation, which let you add your own customized
actions. There are also some built-in subprograms that you can call from triggers that
affect validation.
When-Validate-Item Trigger
You have already used this trigger to add item-level validation. The trigger fires after
standard item validation, and input focus is returned to the item if the trigger fails.
Example
The When-Validate-Item trigger on ORDERS.Order_Date, shown above, ensures that the
Order Date is not later than the current (database) date.

Oracle Forms Developer 10g: Build Internet Applications 19-10

Controlling Validation by Using Triggers (continued)
When-Validate-Record Trigger
This trigger fires after standard record-level validation, when the operator has left a new
or changed record. Because Forms has already checked that required items for the record
are valid, you can use this trigger to perform additional checks that may involve more
than one of the record’s items, in the order they were entered.
When-Validate-Record must be defined at block level or above.
Example
This When-Validate-Record trigger on block ORDER_ITEMS warns the operator when a
line item for a new credit order causes the customer’s credit limit to be exceeded.
DECLARE

cred_limit number;
n number;

BEGIN
-- Order status of 4 is new credit order
IF :orders.order_status = 4 THEN

SELECT credit_limit INTO cred_limit FROM customers
WHERE customer_id = :orders.customer_id;

IF :control.total > cred_limit THEN
n := show_alert('credit_limit_alert');

END IF;
END IF;

END;

Note: If you want to stop the operator from navigating out of the item when validation
fails, you can raise an exception to fail the trigger:

RAISE form_trigger_failure;

In the example above, you would include this code immediately after displaying the alert.

Instructor Note
Introduce When-Validate-Record as an additional validation trigger.
Students who have experience with early versions of the product (SQL*Forms V2.3)
sometimes ask about using Post-Change as a validation trigger.
Post-Change does not fire if an item is set to Null, and it can fire on population at query
time, making it less specific to validation than the When-Validate-<object> triggers.
The Post-Change trigger is included only for compatibility with previous versions of
Forms Builder. Its use is not recommended in new applications.

Oracle Forms Developer 10g: Build Internet Applications 19-11

19-11 Copyright © 2004, Oracle. All rights reserved.

Example: Validating User Input

Trigger failure?

When-Validate-Item

Customer ID

SELECT . . .

WHERE customer_id =

:ORDERS.customer_id

104

Controlling Validation by Using Triggers (continued)
Example: Validating user input
While populating other items, if the user enters an invalid value in the item, a matching
row will not be found, and the SELECT statement will cause an exception. The success or
failure of the query can, therefore, be used to validate user input.
The exceptions that can occur when a single row is not returned from a SELECT in a
trigger are:
• NO_DATA_FOUND: No rows are returned from the query.
• TOO_MANY_ROWS: More than one row is returned from the query.

Example
The following When-Validate-Item trigger is again placed on the Customer_ID
item, and returns the Name that correspond to the Customer ID entered by the user.

SELECT cust_first_name || ‘ ‘ || cust_last_name
INTO :ORDERS.customer_name
FROM customers
WHERE customer_id = :ORDERS.customer_id;

Oracle Forms Developer 10g: Build Internet Applications 19-12

Controlling Validation by Using Triggers (continued)
Example: Validating user input (continued)
If the Customer_ID item contains a value that is not found in the table, the
NO_DATA_FOUND exception is raised, and the trigger will fail because there is no
exception handler to prevent the exception from propagating to the end of the trigger.
Note: A failing When-Validate-Item trigger prevents the cursor from leaving the item.
For an unhandled exception, as above, the user receives the message:
FRM-40735: <trigger type> trigger raised unhandled exception
<exception>

Oracle Forms Developer 10g: Build Internet Applications 19-13

19-13 Copyright © 2004, Oracle. All rights reserved.

Using Client-Side Validation

• Forms
validation:
– Occurs on

middle tier
– Involves

network
traffic

• Client-side
validation:
– Improves

performance
– Implemented

with PJC

Attempt to enter alphabetic characters

Using number datatype

Using KeyFilter PJC

Using Client-Side Validation
It is common practice to process input to an item using a When-Validate-Item
trigger. The trigger itself is processed on the Forms Services. Even validation that
occurs with a format mask on an item involves a trip to the middle tier. In the first
example in the slide, the number data type on the Quantity item is not checked until the
operator presses [Enter] to send the input to the Forms Services machine, which
returns the FRM-50016 error.
You should consider using Pluggable Java Components (PJCs) to replace the default
functionality of standard client items, such as text boxes. Then validation of items, such as
the date or maximum or minimum values, is contained within an item. This technique
opens up opportunities for more complex, application-specific validation, like automatic
formatting of input such as telephone numbers with format (XXX) XXX-XXXX. Even a
simple numeric format is enforced instantly, not allowing alphabetic keystrokes to be
entered into the item.
This validation is performed on the client without involving a network round trip, thus
improving performance. In the second example above, the KeyFilter PJC does not allow
the operator to enter an alphabetic character into the Quantity item. The only message that
is displayed on the message line is the item’s Hint.

Oracle Forms Developer 10g: Build Internet Applications 19-14

Using Client-Side Validation (continued)
Pluggable Java Components are similar to JavaBeans, and in fact, the two terms are often
used interchangeably. Although both are Java components that you can use in a form,
there are the following differences between them:

• JavaBeans are implemented in a bean area item, whereas PJCs are implemented in a
native Forms item such as a text item or check box.

• PJCs must always have the implementation class specified in the Property Palette,
but JavaBeans may be registered at run time with the FBean package.

Oracle Forms Developer 10g: Build Internet Applications 19-15

19-15 Copyright © 2004, Oracle. All rights reserved.

Using Client-Side Validation

To use a PJC:
1. Set the item’s Implementation Class property

2. Set properties for the PJC
SET_CUSTOM_PROPERTY('order_items.quantity',

1,'FILTER_TYPE','NUMERIC');

Using Client-Side Validation (continued)
You implement a PJC to replace an item by setting the item’s Implementation Class
property to the class of the PJC. You may use the SET_CUSTOM_PROPERTY built-in to
set properties of the PJC that restrict input or otherwise validate the item. At run time,
Forms looks for the Java class contained on the middle tier or in the archive files with the
path specified in the Implementation Class for the item. If you open keyfilter.jar in
WinZip, you find that the path to KeyFilter.class is oracle\forms\demos.
You deploy the PJC as you would a JavaBean, which was discussed in Lesson 16. You
can locate the Java class file:

• On the middle-tier server, either in the directory structure referenced by the form
applet’s CODEBASE parameter or in the server’s CLASSPATH. CODEBASE is by
default the forms90\java subdirectory of ORACLE_HOME.

• If using JInitiator, in a JAR file in the middle-tier server’s CODEBASE directory, and
included in the ARCHIVE parameter so that the JAR file is downloaded to and
cached on the client. For example:
archive_jini=f90all_jinit.jar,keyfilter.jar

(The CODEBASE and ARCHIVE parameters are set in the formsweb.cfg file.)

Oracle Forms Developer 10g: Build Internet Applications 19-16

19-16 Copyright © 2004, Oracle. All rights reserved.

Tracking Validation Status

• NEW
– When a record is created
– Also for Copy Value from Item or Initial Value

• CHANGED
– When changed by user or trigger
– When any item in new record is changed

• VALID
– When validation has been successful
– After records are fetched from database
– After a successful post or commit
– Duplicated record inherits status of source

Tracking Validation Status
When Forms leaves an object, it usually validates any changes that were made to the
contents of the object. To determine whether validation must be performed, Forms tracks
the validation status of items and records.

Oracle Forms Developer 10g: Build Internet Applications 19-17

Tracking Validation Status (continued)
Item Validation Status

Record Validation Status

Status Definition
NEW When a record is created, Forms marks every item in that record as

new. This is true even if the item is populated by the Copy Value
from Item or Initial Value item properties, or by the When-Create-
Record trigger.

CHANGED Forms marks an item as changed under the following conditions:
• When the item is changed by the user or a trigger
• When any item in a new record is changed, all of the items in the

record are marked as changed.
VALID Forms marks an item as valid under the following conditions:

• All items in the record that are fetched from the database are
marked as valid.

• If validation of the item has been successful
• After successful post or commit
• Each item in a duplicated record inherits the status of its source.

Status Definition
NEW When a record is created, Forms marks that record as new. This is

true even if the item is populated by the Copy Value from Item or
Initial Value item properties, or by the When-Create-Record trigger.

CHANGED Whenever an item in a record is marked as changed, Forms marks
that record as changed.

VALID Forms marks a record as valid under the following conditions:
• After all items in the record have been successfully validated
• All records that are fetched from the database are marked as

valid
• After successful post or commit
• A duplicate record inherits the status of its source

Oracle Forms Developer 10g: Build Internet Applications 19-18

19-18 Copyright © 2004, Oracle. All rights reserved.

Controlling When Validation Occurs with
Built-Ins

• CLEAR_BLOCK, CLEAR_FORM, EXIT_FORM
• ENTER
• SET_FORM_PROPERTY

– (..., VALIDATION)
– (..., VALIDATION_UNIT)

• ITEM_IS_VALID item property
• VALIDATE (scope)

Controlling When Validation Occurs with Built-Ins
You can use the following built-in subprograms in triggers to affect validation.
CLEAR_BLOCK, CLEAR_FORM, and EXIT_FORM
The first parameter to these built-ins, COMMIT_MODE, controls what will be done with
unapplied changes when a block is cleared, the form is cleared, or the form is exited
respectively. When the parameter is set to NO_VALIDATE, changes are neither validated
nor committed (by default, the operator is prompted for the action).
ITEM_IS_VALID Item Property
You can use GET_ITEM_PROPERTY and SET_ITEM_PROPERTY
built-ins with the ITEM_IS_VALID parameter to get or set the validation status of an
item. You cannot directly get and set the validation status of a record. However, you can
get or set the validation status of all the items in a record.
ENTER

The ENTER built-in performs the same action as the [Enter] key. That is, it forces
validation of data in the current validation unit.

Oracle Forms Developer 10g: Build Internet Applications 19-19

Controlling When Validation Occurs with Built-Ins (continued)
SET_FORM_PROPERTY

You can use this to disable Forms validation. For example, suppose you are testing a
form, and you need to bypass normal validation. Set the Validation property to
Property_False for this purpose:
SET_FORM_PROPERTY(’form_name’,VALIDATION, PROPERTY_FALSE);

You can also use this built-in to change the validation unit programmatically:
SET_FORM_PROPERTY(’form_name’,VALIDATION_UNIT, scope);

VALIDATE

VALIDATE(scope)forces Forms to immediately execute validation processing for the
indicated scope.
Note: Scope is one of DEFAULT_SCOPE, BLOCK_SCOPE, RECORD_SCOPE, or
ITEM_SCOPE.

Oracle Forms Developer 10g: Build Internet Applications 19-20

19-20 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The validation unit specifies how much data is

entered before validation occurs.
• You can control validation using:

– Object properties: Validation Unit (form); Validate
from List (item)

– Triggers: When-Validate-Item (item level); When-
Validate-Record (block level)

– Pluggable Java Components for client-side
validation

Summary
In this lesson, you learned to use additional validation features in Forms Builder, and to
control when validation occurs.

• Validation occurs at several levels: Item, Record, Block, and Form.
• Validation happens when:

The [Enter] Key is pressed or the ENTER built-in procedure is run (to force
validation immediately.)
Control leaves the validation unit due to navigation or Commit.

• Standard validation occurs before trigger validation.
• The Default validation unit is item level.
• The When-Validate-“object” triggers supplement standard validation.
• You can use Pluggable Java Components to perform client-side validation.

Oracle Forms Developer 10g: Build Internet Applications 19-21

19-21 Copyright © 2004, Oracle. All rights reserved.

Summary

• Forms tracks validation status of items and
records, which are either NEW, CHANGED, or VALID.

• You can use built-ins to control when validation
occurs:
– CLEAR_BLOCK
– CLEAR_FORM
– EXIT_FORM
– ENTER
– ITEM_IS_VALID
– VALIDATE

Summary (continued)
• Forms tracks validation status internally: NEW, CHANGED, or VALID
• You can use built-ins to control when validation occurs.

Oracle Forms Developer 10g: Build Internet Applications 19-22

19-22 Copyright © 2004, Oracle. All rights reserved.

Practice 19 Overview

This practice covers the following topics:
• Validating the Sales Representative item value by

using an LOV
• Writing a validation trigger to check that online

orders are CREDIT orders
• Populating customer names, sales representative

names, and IDs when a customer ID is changed
• Writing a validation trigger to populate the name

and the price of the product when the product ID
is changed

• Restricting user input to numeric characters using
a Pluggable Java Component

Practice 19 Overview
In this practice, you introduce additional validation to the CUSTGXX and ORDGXX form
modules.

• Validating sales representative item value by using an LOV
• Writing a validation trigger to check that all online orders are CREDIT orders
• Populating customer names, sales representative names, and IDs when a customer

ID is changed
• Writing a validation trigger to populate the name and the price of the product when

the product ID is changed
• Implementing client-side validation on the item quantity using a Pluggable Java

Component
Note: For solutions to this practice, see Practice 19 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 19-23

Practice 19
1. In the CUSTGXX form, cause the Account_Mgr_Lov to be displayed whenever the

user enters an Account_Mgr_Id that does not exist in the database.
2. Save and compile the form. Click Run Form to run the form and test the

functionality.
3. In the ORDGXX form, write a validation trigger to check that if the Order_Mode is

online, the Order_Status indicates a CREDIT order (values between 4 and 10). You
can import the text from pr19_3.txt.

4. In the ORDGXX form, create a trigger to write the correct values to the
Customer_Name, Sales_Rep_Name, and Sales_Rep_Id items whenever validation
occurs on Customer_Id. Fail the trigger if the data is not found. You can import text
from pr19_4a.txt and pr19_4b.txt.

5. Create another validation trigger on ORDER_ITEMS.Product_Id to derive the name
of the product and suggested wholesale price, and write them to the Description item
and the Price item. Fail the trigger and display a message if the product is not found.
You can import the text from pr19_5.txt.

6. Perform client-side validation on the ORDER_ITEMS.Quantity item using a
Pluggable Java Component to filter the keystrokes and allow only numeric values.
The full path to the PJC class is oracle.forms.demos.KeyFilter (this is
case sensitive), to be used as the Implementation Class for the item. You will set the
filter for the item in the next practice, so the validation is not yet functional.

7. Save and compile the form. Click Run Form to run the form and test the changes.
Do not test the validation on the Quantity item because it will not function until after
you set the filter on the item in Practice 20.

Copyright © 2004, Oracle. All rights reserved.

Navigation

Schedule: Timing Topic
45 minutes Lecture
20 minutes Practice
65 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 20-2

20-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Distinguish between internal and external

navigation
• Control navigation with properties
• Describe and use navigation triggers to control

navigation
• Use navigation built-ins in triggers

Introduction
Overview
Forms Builder offers a variety of ways to control cursor movement. This lesson looks at
the different methods of forcing navigation both visibly and invisibly.

Oracle Forms Developer 10g: Build Internet Applications 20-3

20-3 Copyright © 2004, Oracle. All rights reserved.

Navigation Overview

• What is the navigational unit?
– Outside the form
– Form
– Block
– Record
– Item

• Entering and leaving objects
• What happens if navigation fails?

Navigation Overview
The following sections introduce a number of navigational concepts to help you to
understand the navigation process.
What is the Navigational Unit?
The navigational unit is an invisible, internal object that determines the navigational state
of a form. Forms uses the navigation unit to keep track of the object that is currently the
focus of a navigational process. The navigation unit can be one of the objects in the
following hierarchy:

• Outside the form
• Form
• Block
• Record
• Item

When Forms navigates, it changes the navigation unit moving through this object
hierarchy until the target item is reached.

Oracle Forms Developer 10g: Build Internet Applications 20-4

Navigation Overview (continued)
Entering and Leaving Objects
During navigation, Forms leaves and enters objects. Entering an object means changing
the navigation unit from the object above in the hierarchy. Leaving an object means
changing the navigation unit to the object above.
The Cursor and how it Relates to the Navigation Unit
The cursor is a visible, external object that indicates the current input focus. Forms will
not move the cursor until the navigation unit has successfully become the target item. In
this sense, the navigation unit acts as a probe.
What Happens if Navigation Fails?
If navigation fails, Forms reverses the navigation path and attempts to move the
navigation unit back to its initial location. Note that the cursor is still at its initial
position. If Forms cannot move the navigation unit back to its initial location, it exits
the form.

Oracle Forms Developer 10g: Build Internet Applications 20-5

20-5 Copyright © 2004, Oracle. All rights reserved.

v

^
x

Understanding Internal Navigation

Next Record

Exit item

Exit record

Enter record

Enter item

Understanding Internal Navigation
Navigation occurs when the user or a trigger causes the input focus to move to another
object. You have seen that navigation involves changing the location of the input focus on
the screen. In addition to the visible navigation that occurs, some logical navigation takes
place. This logical navigation is also known as internal navigation.
Example
When you enter a form module, you see the input focus in the first enterable item of the
first navigation block. You do not see the internal navigation events that must occur for
the input focus to enter the first item. These internal navigation events are as follows:

• Entry to form
• Entry to block
• Entry to record
• Entry to item

Oracle Forms Developer 10g: Build Internet Applications 20-6

Understanding Internal Navigation (continued)
Example
When you commit your inserts, updates, and deletes to the database, you do not see the
input focus moving. However, internally the following navigation events must occur
before commit processing begins:

• Exit current item
• Exit current record
• Exit current block

Performance Note
Forms uses smart event bundling: All the events that are triggered by navigation
between two objects are delivered as one packet to Forms Services on the middle tier
for subsequent processing.

Instructor Note
Draw navigation examples of “on entry” and “on commit.”

Demonstration: Run the form Navdemo.fmx, which displays messages as
navigational triggers fire. This illustrates the navigation that occurs behind the scenes
when a form first opens.

Oracle Forms Developer 10g: Build Internet Applications 20-7

20-7 Copyright © 2004, Oracle. All rights reserved.

Using Object Properties to Control
Navigation

• Block
– Navigation Style
– Previous Navigation Data Block
– Next Navigation Data Block

• Item
– Enabled
– Keyboard Navigable
– Mouse Navigate
– Previous Navigation Item
– Next Navigation Item

Controlling Navigation Using Object Properties
You can control the path through an application by controlling the order in which the user
navigates to objects. You have seen navigation properties for blocks and items:

Note: You can use the mouse to navigate to any enabled item regardless of its position in
the navigational order.

Object Property
Block Navigation Style

Previous Navigation Block
Next Navigation Block

Item Enabled
Keyboard Navigable
Mouse Navigate
Previous Navigation Item
Next Navigation Item

Oracle Forms Developer 10g: Build Internet Applications 20-8

20-8 Copyright © 2004, Oracle. All rights reserved.

Using Object Properties to Control
Navigation

• Form module
– Mouse

Navigation Limit
– First Navigation

Data Block

Controlling Navigation Using Object Properties (continued)
There are two other navigation properties that you can set for the form module: Mouse
Navigation Limit and First Navigation Block.

Form Module Property Function
Mouse Navigation Limit Determines how far outside the current item the user

can navigate with the mouse
First Navigation Block Specifies the name of the block to which Forms

should navigate on form startup (Setting this
property does not override the order used for
committing.)

Oracle Forms Developer 10g: Build Internet Applications 20-9

20-9 Copyright © 2004, Oracle. All rights reserved.

v

^

Mouse Navigate Property

x

MOUSE NAVIGATE = YES

Exit item

Exit record

Exit block

Enter block

Enter record

Enter item

Mouse Navigate Property
The Mouse Navigate property is valid for the following items:

• Push Button
• Check box
• List item
• Radio group
• Hierarchical tree item
• Bean Area Item

Note: The default setting for the Mouse Navigate property is Yes.

Instructor Note
Point out that with Mouse Navigate set to No, none of the navigation events listed in the
above slide occurs.

Setting Use to Ensure That:
Yes Forms navigates to the new item. (This causes the relevant

navigational and validation triggers to fire.)
No Forms does not navigate to the new item or validate the current

item when the user activates the new item with the mouse.

Oracle Forms Developer 10g: Build Internet Applications 20-10

20-10 Copyright © 2004, Oracle. All rights reserved.

v

^
x

Writing Navigation Triggers

Pre- and Post-

When-New-<object>-Instance

Writing Navigation Triggers
The navigation triggers can be subdivided into two general groups:

• Pre- and Post- navigation triggers
• When-New-<object>-Instance triggers

When do Pre- and Post-navigation Triggers Fire?
The Pre- and Post- navigation triggers fire during navigation, just before entry to or just
after exit from the object specified as part of the trigger name.
Example
The Pre-Text-Item trigger fires just before entering a text item.
When do Navigation Triggers not Fire?
The Pre- and Post-navigation triggers do not fire if they belong to a unit that is lower in
the hierarchy than the current validation unit. For instance, if the validation unit is Record,
Pre- and Post-Text-Item triggers do not fire.

Oracle Forms Developer 10g: Build Internet Applications 20-11

20-11 Copyright © 2004, Oracle. All rights reserved.

Navigation Triggers

When-New-<object>-Instance

Fire after navigation

Fire even when validation unit is
higher than the trigger object

Allow restricted and
unrestricted built-ins

Are not affected by failure

Pre- and Post-

Fire during navigation

Do not fire if validation unit
is higher than trigger object

Allow unrestricted built-ins

Handle failure by returning to
initial object

Navigation Triggers
When do When-New-<object>-Instance Triggers Fire?
The When-New-<object>-Instance triggers fire immediately after navigation to the object
specified as part of the trigger name.
Example
The When-New-Item-Instance trigger fires immediately after navigation to a new instance
of an item.
What Happens when a Navigation Trigger Fails?
If a Pre- or Post-navigation trigger fails, the input focus returns to its initial location
(where it was prior to the trigger firing). To the user, it appears that the input focus has not
moved at all.
Note: Be sure that Pre- and Post-navigation triggers display a message on failure. Failure
of a navigation trigger can cause a fatal error to your form. For example, failure of Pre-
Form, Pre-Block, Pre-Record, or Pre-Text-Item on entry to the form will cancel execution
of the form.

Oracle Forms Developer 10g: Build Internet Applications 20-12

20-12 Copyright © 2004, Oracle. All rights reserved.

When-New-<object>-Instance Triggers

• When-New-Form-Instance
• When-New-Block-Instance
• When-New-Record-Instance
• When-New-Item-Instance

Using the When-New-<object>-Instance Triggers
If you include complex navigation paths through your application, you may want to check
or set initial conditions when the input focus arrives in a particular block, record, or item.
Use the following triggers to do this:

Trigger Fires
When-New-Form-Instance Whenever a form is run, after successful

navigation into the form
When-New-Block-Instance After successful navigation into a block
When-New-Record-Instance After successful navigation into the record
When-New-Item-Instance After successful navigation to a new instance of

the item

Oracle Forms Developer 10g: Build Internet Applications 20-13

20-13 Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY Examples

SET_FORM_PROPERTY(FIRST_NAVIGATION_BLOCK,

’ORDER_ITEMS’);

SET_BLOCK_PROPERTY(’ORDERS’, ORDER_BY,

’CUSTOMER_ID’);

SET_RECORD_PROPERTY(3, ’ORDER_ITEMS’, STATUS,

QUERY_STATUS);

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

ICON_NAME, ’stock’);

Initializing Forms Builder Objects
Use the When-New-<object>-Instance triggers, along with the
SET_<object>_PROPERTY built-in subprograms to initialize Forms Builder objects.
These triggers are particularly useful if you conditionally require a default setting.
Example
The following example of a When-New-Block-Instance trigger conditionally sets the
DELETE ALLOWED property to FALSE.

IF GET_APPLICATION_PROPERTY(username) = ’SCOTT’ THEN
SET_BLOCK_PROPERTY(’ORDER_ITEMS’,DELETE_ALLOWED,

PROPERTY_FALSE);
END IF;

Example
Perform a query of all orders, when the ORDERS form is run, by including the following
code in your When-New-Form-Instance trigger:

EXECUTE_QUERY;

Oracle Forms Developer 10g: Build Internet Applications 20-14

Initializing Forms Builder Objects (continued)
Example
Register the Color Picker JavaBean into the Control.Colorpicker bean area item when the
CUSTOMERS form is run by including the following code in your When-New-Form-
Instance trigger:

FBean.Register_Bean('control.colorpicker',1,
'oracle.forms.demos.beans.ColorPicker');

At run time, Forms looks for the Java class contained on the middle tier or in the archive
files with the path specified in the code. If you open colorpicker.jar in WinZip,
you find that the path to ColorPicker.class is oracle\forms\demos\beans.

Oracle Forms Developer 10g: Build Internet Applications 20-15

20-15 Copyright © 2004, Oracle. All rights reserved.

The Pre- and Post-Triggers

• Pre/Post-Form
• Pre/Post-Block
• Pre/Post-Record
• Pre/Post-Text-Item

Using the Pre- and Post-Triggers
Define Pre- and Post-Text-Item triggers at item level, Pre- and Post-Block at block level,
and Pre- and Post-Form at form level. Pre- and Post-Text-Item triggers fire only for text
items.

Oracle Forms Developer 10g: Build Internet Applications 20-16

Using the Pre- and Post-Triggers (continued)

Trigger Type Use to
Pre-Form • Validate

− User
− Time of day

• Initialize control blocks
• Call another form to display messages

Post-Form • Perform housekeeping, such as erasing
global variables

• Display messages to user before exit
Pre-Block • Authorize access to the block

• Set global variables
Post-Block • Validate the last record that had input focus

• Test a condition and prevent the user from
leaving the block

Pre-Record • Set global variables
Post-Record • Clear global variables

• Set a visual attribute for an item as the user
scrolls through a set of records

• Perform cross field validation
Pre-Text-Item • Derive a complex default value

• Record the previous value of a text item
Post-Text-Item • Calculate or change item values

Oracle Forms Developer 10g: Build Internet Applications 20-17

20-17 Copyright © 2004, Oracle. All rights reserved.

Post-Block Trigger Example

Disabling Stock button when leaving the ORDER_ITEMS
block:

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

enabled, property_false);

Instructor Note
Ask the students what type of trigger you would use reenable the Stock button.

Oracle Forms Developer 10g: Build Internet Applications 20-18

20-18 Copyright © 2004, Oracle. All rights reserved.

v

^

The Navigation Trap

A Post-Text-Item

Pre-Text-Item

Pre-Text-Item

B

The Navigation Trap
You have seen that the Pre- and Post- navigation triggers fire during navigation, and when
they fail the internal cursor attempts to return to the current item
(SYSTEM.CURSOR_ITEM).
The diagram in the slide illustrates the navigation trap. This can occur when a Pre- or
Post- navigation trigger fails and attempts to return the logical cursor to its initial item.
However, if the initial item has a Pre-Text-Item trigger that also fails the cursor has
nowhere to go, and a fatal error occurs.
Note: Be sure to code against navigation trigger failure.

Instructor Note
Demonstration: The navigation_trap.fmb file illustrates the navigation trap.
When you run the form and navigate to the 2nd item, its Pre-Text-Item trigger fails. Forms
is not able to return input focus to the first item because its Pre-Text-Item trigger is set to
fail the second time it fires.

Oracle Forms Developer 10g: Build Internet Applications 20-19

20-19 Copyright © 2004, Oracle. All rights reserved.

Using Navigation Built-Ins in Triggers

GO_FORM
GO_BLOCK
GO_ITEM
GO_RECORD
NEXT_BLOCK
NEXT_ITEM
NEXT_KEY
NEXT_RECORD

NEXT_SET
UP
DOWN
PREVIOUS_BLOCK
PREVIOUS_ITEM
PREVIOUS_RECORD
SCROLL_UP
SCROLL_DOWN

Using Navigation Built-Ins in Triggers
You can initiate navigation programmatically by calling the built-in subprograms, such as
GO_ITEM and PREVIOUS_BLOCK from triggers.

Built-Ins for Navigation Function
GO_FORM Navigates to an open form in a multiple form

application
GO_BLOCK/ITEM/RECORD Navigates to the indicated block, item, or record
NEXT_BLOCK/ITEM/KEY Navigates to the next enterable block, item, or primary

key item
NEXT/PREVIOUS_RECORD Navigates to the first enterable item in the next or

previous record
NEXT_SET Fetches another set of records from the database and

navigates to the first record that the fetch retrieves
UP, DOWN Navigates to the instance of the current item in the

previous/next record
PREVIOUS_BLOCK/ITEM Navigates to the previous enterable block or item
SCROLL_UP/DOWN Scrolls the block so that the records above the top

visible one or below the bottom visible one display

Oracle Forms Developer 10g: Build Internet Applications 20-20

20-20 Copyright © 2004, Oracle. All rights reserved.

IF CHECKBOX_CHECKED(’ORDERS.order_mode’) --Online

THEN -- order

ORDERS.order_status := 4; --Credit order

GO_ITEM(‘ORDERS.order_status’);

END IF;

IF CHECKBOX_CHECKED(’ORDERS.order_mode’) --Online

THEN -- order

ORDERS.order_status := 4; --Credit order

GO_ITEM(‘ORDERS.order_status’);

END IF;

Using Navigation Built-Ins in Triggers

• When-New-Item-Instance

• Pre-Text-Item

Using Navigation Built-Ins in Triggers (continued)
Calling built-ins from Navigational Triggers
You are not allowed to use a restricted built-in from within a trigger that fires during the
navigation process (the Pre- and Post- triggers). This is because restricted built-ins
perform some sort of navigation, and so cannot be called until Forms navigation is
complete.
You can call restricted built-ins from triggers such as When-New-Item-Instance, because
that trigger fires after Forms has moved input focus to the new item.

Instructor Note
Point out that the first example above correctly uses the When-New-Item-Instance trigger,
whereas the second incorrectly uses the Pre-Text-Item trigger and contains a restricted
built-in.

Oracle Forms Developer 10g: Build Internet Applications 20-21

20-21 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• External navigation is visible to the user, while

internal navigation occurs behind the scenes.
• You can control navigation with properties of the

form, block, or item:
– Set in Navigation category of the Property Palette
OR
– Use SET_[FORM | BLOCK | ITEM]_PROPERTY

Summary
In this lesson, you learned at the different methods of forcing visible navigation and also
the invisible events.

• You can control navigation through the following properties:
Form module properties
Data block properties
Item properties

• Internal navigation events also occur.

Oracle Forms Developer 10g: Build Internet Applications 20-22

20-22 Copyright © 2004, Oracle. All rights reserved.

Summary

• Navigation triggers:
– Those that fire during navigation (watch out for the

navigation trap):
[Pre | Post] - [Form | Block | Item]

– Those that fire after navigation:
When-New- [Form | Block | Record | Item] -Instance

• You can use navigation built-ins in triggers
(except for triggers that fire during navigation):
– GO_[FORM | BLOCK | RECORD | ITEM]
– NEXT_[BLOCK | RECORD | ITEM | KEY | SET]
– UP
– DOWN
– PREVIOUS_[BLOCK | RECORD | ITEM]
– SCROLL_[UP | DOWN]

Summary (continued)
• Navigation triggers:

When-New-<object>-Instance
Pre- and Post-

• Avoid the navigation trap.
• Navigation built-ins are available.

Oracle Forms Developer 10g: Build Internet Applications 20-23

20-23 Copyright © 2004, Oracle. All rights reserved.

Practice 20 Overview

This practice covers the following topics:
• Registering the bean area’s JavaBean at form

startup
• Setting properties on a Pluggable Java

Component at form startup
• Executing a query at form startup
• Populating product images when cursor arrives on

each record of the ORDER_ITEMS block

Practice 20 Overview
In this practice, you provide a trigger to automatically perform a query, register a
JavaBean, and set properties on a PJC at form startup. Also, you use When-New-
<object>-Instance triggers to populate the Product_Image item as the operator navigates
between records in the ORDGXX form.

• Executing a query at form startup
• Populating product images when the cursor arrives on each record of the

ORDER_ITEMS block
Note: For solutions to this practice, see Practice 20 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 20-24

Practice 20
1. When the ORDGXX form first opens, set a filter on the ORDER_ITEMS.Quantity

Pluggable Java Component, and execute a query. You can import the code for the
trigger from pr20_1.txt.

2. Write a trigger that fires as the cursor arrives in each record of the ORDER_ITEMS
block to populate the Product_Image item with a picture of the product, if one exists.
First create a procedure called get_image to populate the image, then call that
procedure from the appropriate trigger. You can import the code for the procedure
from pr20_2a.txt.

3. Define the same trigger type and code on the ORDERS block.
4. Is there another trigger where you might also want to place this code?
5. Save and compile the form. Click Run Form to run the form and test the changes.
6. Notice that you receive an error if the image file does not exist. Code a trigger to

gracefully handle the error by populating the image item with a default image called
blank.jpg. You can import the code from pr20_6.txt.

7. The image item has a lot of blank space when the image does not take up the entire
area. To make it look better, set its Background Color of both the
CONTROL.Product_Image item and the CV_ORDER canvas to the same value, such
as r0g75b75. Set the Bevel for the Product_Image item to None.

8. Click Run Form to run the form again and test the changes.
9. In the CUSTGXX form, register the ColorPicker bean (making its methods available

to Forms) when the form first opens, and also execute a query on the CUSTOMERS
block. You can import the code from pr20_9.txt.

10. Save, compile, and click Run Form to run the form and test the Color button. You
should be able to invoke the ColorPicker bean from the Color button, now that the
bean has been registered at form startup.

Copyright © 2004, Oracle. All rights reserved.

Transaction Processing

Schedule: Timing Topic
90 minutes Lecture
30 minutes Practice

120 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 21-2

21-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the process used by Forms to apply

changes to the database
• Describe the commit sequence of events
• Supplement transaction processing
• Allocate sequence numbers to records as they are

applied to tables
• Implement array DML

Introduction
Overview
While applying a user’s changes to the database, Forms Builder enables you to make
triggers fire in order to alter or add to the default behavior. This lesson shows you how to
build triggers that can perform additional tasks during this stage of a transaction.

Oracle Forms Developer 10g: Build Internet Applications 21-3

21-3 Copyright © 2004, Oracle. All rights reserved.

Transaction Processing Overview

Transaction (Begin)

FORM A
Action Edit

Block#1

Block#2

New Record
Updated Record

Deleted Record

Updated Record

Commit work;

INSERT INTO Table1

UPDATE Table1

DELETE FROM Table2

UPDATE Table2

Transaction (End)

Save

Transaction Processing Overview
When Forms is asked to save the changes made in a form by the user, a process takes
place involving events in the current database transaction. This process includes:

• Default Forms transaction processing: Applies the user’s changes to the base
tables

• Firing transactional triggers: Needed to perform additional or modified actions in
the saving process defined by the designer

When all of these actions are successfully completed, Forms commits the transaction,
making the changes permanent.

Oracle Forms Developer 10g: Build Internet Applications 21-4

21-4 Copyright © 2004, Oracle. All rights reserved.

Transaction Processing Overview

Transaction processing includes two phases:
• Post:

– Writes record changes to base tables
– Fires transactional triggers

• Commit: Performs database commit
Errors result in:
• Rollback of the database changes
• Error message

Transaction Processing Overview (continued)
The transaction process occurs as a result of either of the following actions:

• The user presses Save or selects Action > Save from the menu, or clicks Save on the
default Form toolbar.

• The COMMIT_FORM built-in procedure is called from a trigger.
In either case, the process involves two phases, posting and committing:
Post: Posting writes the user’s changes to the base tables, using implicit INSERT,
UPDATE, and DELETE statements generated by Forms. The changes are applied in block
sequence order as they appear in the Object Navigator at design time. For each block,
deletes are performed first, followed by inserts and updates. Transactional triggers fire
during this cycle if defined by the designer.
The built-in procedure POST alone can invoke this posting process.
Commit: This performs the database commit, making the applied changes permanent and
releasing locks.

Oracle Forms Developer 10g: Build Internet Applications 21-5

Transaction Processing Overview (continued)
Other events related to transactions include rollbacks, savepoints, and locking.
Rollbacks
Forms will roll back applied changes to a savepoint if an error occurs in its default
processing, or when a transactional trigger fails.
By default, the user is informed of the error through a message, and a failing insert or
update results in the record being redisplayed. The user can then attempt to correct the
error before trying to save again.
Savepoints
Forms issues savepoints in a transaction automatically, and will roll back to the latest
savepoint if certain events occur. Generally, these savepoints are for Forms internal use,
but certain built-ins, such as the EXIT_FORM built-in procedure, can request a rollback to
the latest savepoint by using the TO_SAVEPOINT option.
Locking
When you update or delete base table records in a form application, database locks are
automatically applied. Locks also apply during the posting phase of a transaction, and for
DML statements that you explicitly use in your code.
Note: The SQL statements COMMIT, ROLLBACK, and SAVEPOINT cannot be called
from a trigger directly. If encountered in a Forms program unit, Forms treats COMMIT as
the COMMIT_FORM built-in, and ROLLBACK as the CLEAR_FORM built-in.

Oracle Forms Developer 10g: Build Internet Applications 21-6

21-6 Copyright © 2004, Oracle. All rights reserved.

The Commit Sequence of Events

Validate the block

Pre-Commit

Pre-Delete

Delete row

Post-Delete

More
records?

1

On-Delete

Validate the form

2

The Commit Sequence of Events
The commit sequence of events (when the Array DML size is 1) is as follows:

1. Validate the form.
2. Process savepoint.
3. Fire the Pre-Commit trigger.
4. Validate the block (for all blocks in sequential order).
5. Perform the DML:

For all deleted records of the block (in reverse order of deletion):
Fire the Pre-Delete trigger.
Delete the row from the base table or fire the On-Delete trigger.
Fire the Post-Delete trigger.

For all inserted or updated records of the block in sequential order:
If it is an inserted record:

Copy Value From Item.
Fire the Pre-Insert trigger.
Check the record uniqueness.
Insert the row into the base table or fire the On-Insert trigger.
Fire the Post-Insert trigger.

Oracle Forms Developer 10g: Build Internet Applications 21-7

21-7 Copyright © 2004, Oracle. All rights reserved.

The Commit Sequence of Events

Check uniqueness

On-Insert Insert row

Post-Insert Post-Update

More
blocks?

Post-Forms-Commit

INSERT UPDATE

Stop

2

More
records?

Pre-Insert

Copy value from item

Pre-Update

Check uniqueness

On-Update Update row

1

Post-Database-Commit
Commit changes

The Commit Sequence of Events (continued)
If it is an updated record:

Fire the Pre-Update trigger.
Check the record uniqueness.
Update the row in the base table or fire the On-Update trigger.
Fire the Post-Update trigger.

6. Fire the Post-Forms-Commit trigger.
If the current operation is COMMIT, then:

7. Issue an SQL-COMMIT statement.
8. Fire the Post-Database-Commit trigger.

Oracle Forms Developer 10g: Build Internet Applications 21-8

21-8 Copyright © 2004, Oracle. All rights reserved.

Characteristics of Commit Triggers

• Pre-Commit: Fires once if form changes are made
or uncommitted changes are posted

• Pre- and Post-DML
• On-DML: Fires per record, replacing default DML

on row
Use DELETE_RECORD, INSERT_RECORD,
UPDATE_RECORD built-ins

Characteristics of Commit Triggers
You have already seen when commit triggers fire during the normal flow of commit
processing. The table on the next page gives more detailed information regarding the
conditions under which these triggers fire.
It is usually unnecessary to code commit triggers, and the potential for coding errors is
high. Because of this, use commit triggers only if your application requires special
processing at commit time.
One valid use of commit triggers is to distribute DML statements to underlying tables
when you are performing DML on a block based on a join view. However, using a
database instead-of trigger may eliminate the need to define specialized Forms commit
triggers for this purpose.
Note: If a commit trigger—except for the Post-Database-Commit trigger—fails, the
transaction is rolled back to the savepoint that was set at the beginning of the current
commit processing. This also means that uncommitted posts issued before the savepoint
are not rolled back.

Oracle Forms Developer 10g: Build Internet Applications 21-9

21-9 Copyright © 2004, Oracle. All rights reserved.

Characteristics of Commit Triggers

• Post-Forms-Commit: Fires once even if no
changes are made

• Post-Database-Commit: Fires once even if no
changes are made

Note: A commit-trigger failure causes a rollback to the
savepoint.

Characteristics of Commit Triggers (continued)
Trigger Characteristic
Pre-Commit Fires once during commit processing, before base table blocks are

processed; fires if there are changes to base table items in the form or
if changes have been posted but not yet committed (always fires in
case of uncommitted posts, even if there are no changes to post)

Pre- and Post-DML Fire for each record that is marked for insert, update, or delete, just
before or after the row is inserted, updated, or deleted in the database

On-DML Fires for each record marked for insert, update, or delete when Forms
would typically issue its INSERT, UPDATE, or DELETE statement,
replacing the default DML statements (Include a call to
INSERT_RECORD, UPDATE_RECORD, or DELETE_RECORD built-
in to perform default processing for these triggers.)

Post-Forms-Commit Fires once during commit processing, after base table blocks are
processed but before the SQL-COMMIT statement is issued; even
fires if there are no changes to post or commit

Post-Database-Commit Fires once during commit processing, after the SQL-COMMIT
statement is issued; even fires if there are no changes to post or
commit (this is also true for the SQL-COMMIT statement itself.)

Oracle Forms Developer 10g: Build Internet Applications 21-10

21-10 Copyright © 2004, Oracle. All rights reserved.

Common Uses for Commit Triggers

Pre-Commit

Pre-Delete

Pre-Insert

Pre-Update

Check user authorization; set up special locking

Journaling; implement foreign-key delete rule

Generate sequence numbers; journaling;
automatically generated columns; check
constraints

Journaling; implement foreign-key update rule;
auto-generated columns; check constraints

Common Uses for Commit Triggers
Once you know when a commit trigger fires, you should be able to choose the right
commit trigger for the functionality that you want. To help you with this, the most
common uses for commit triggers are mentioned in the table on the next page.
Where possible, implement functionality such as writing to a journal table, automatically
supplying column values, and checking constraints in the server.
Note: Locking is also needed for transaction processing. You can use the On-Lock trigger
if you want to amend the default locking of Forms.
Use DML statements in commit triggers only; otherwise the DML statements are not
included in the administration kept by Forms concerning commit processing. This may
lead to unexpected and unwanted results.

Oracle Forms Developer 10g: Build Internet Applications 21-11

21-11 Copyright © 2004, Oracle. All rights reserved.

Common Uses for Commit Triggers

On-Insert/Update/Delete

Post-Forms-Commit

Post-Database-Commit

Replace default block
DML statements

Check complex multirow
constraints

Test commit success;
test uncommitted posts

Common Uses for Commit Triggers (continued)

Trigger Common Use
Pre-Commit Checks user authorization; sets up special locking requirements
Pre-Delete Writes to journal table; implements restricted or cascade delete
Pre-Insert Writes to journal table; fills automatically generated columns;

generates sequence numbers; checks constraints
Pre-Update Writes to journal table; fills automatically generated columns;

checks constraints; implements restricted or cascade update
Post-Delete, Post-
Insert, Post-Update

Seldom used

On-Delete, On-
Insert, On-Update

Replaces default block DML statements; for example, to
implement a pseudo delete or to update a join view

Post-Forms-Commit Checks complex multi-row constraints
Post-Database-
Commit

Determines if commit was successful; determines if there are
posted uncommitted changes

Oracle Forms Developer 10g: Build Internet Applications 21-12

21-12 Copyright © 2004, Oracle. All rights reserved.

ColumnItem

Life of an Update

Query
Rollback

Data20 20

Locked
Query

30 20Update record in form

[Save] 30 20[Save]

Pre-Update 30 20

Row Updated 30 30 20Row updated

Post-Update 30 30 20

30 30

Post-Update

Pre-Update

Commit

Life of an Update
To help you decide where certain trigger actions can be performed, consider an update
operation as an example.

Oracle Forms Developer 10g: Build Internet Applications 21-13

Life of an Update (continued)
Example
The price of a product is being updated in a form. After the user queries the record, the
following events occur:

1. The user updates the Price item. This is now different from the corresponding
database column. By default, the row is locked on the base table.

2. The user saves the change, initiating the transaction process.
3. The Pre-Update trigger fires (if present). At this stage, the item and column are still

different, because the update has not been applied to the base table. The trigger
could compare the two values, for example, to make sure the new price is not lower
than the existing one.

4. Forms applies the user’s change to the database row. The item and column are now
the same.

5. The Post-Update trigger fires (if present). It is too late to compare the item against
the column, because the update has already been applied. However, the Oracle
database retains the old column value as rollback data, so that a failure of this trigger
reinstates the original value.

6. Forms issues the database commit, thus discarding the rollback data, releasing locks,
and making the changes permanent. The user receives the message “Transaction
Completed...”.

Oracle Forms Developer 10g: Build Internet Applications 21-14

21-14 Copyright © 2004, Oracle. All rights reserved.

Delete Validation

• Pre-Delete trigger
• Final checks before row deletion
DECLARE

CURSOR C1 IS
SELECT ’anything’ FROM ORDERS
WHERE customer_id = :CUSTOMERS.customer_id;

BEGIN
OPEN C1;
FETCH C1 INTO :GLOBAL.dummy;
IF C1%FOUND THEN

CLOSE C1;
MESSAGE(’There are orders for this

customer!’);
RAISE form_trigger_failure;

ELSE
CLOSE C1;

END IF;
END;

Delete Validation
Master-detail blocks that are linked by a relation with the nonisolated deletion rule
automatically prevent master records from being deleted in the form if matching detail
rows exist.
You may, however, want to implement a similar check, as follows, when a deletion is
applied to the database:

• A final check to ensure that no dependent detail rows have been inserted by another
user since the master record was marked for deletion in the form (In an Oracle
database, this is usually performed by a constraint or a database trigger.)

• A final check against form data, or checks that involve actions within the application
Note: If you select the “Enforce data integrity” check box in the Data Block Wizard,
Forms Builder automatically creates the related triggers to implement constraints.

Oracle Forms Developer 10g: Build Internet Applications 21-15

Delete Validation (continued)
Example
This Pre-Delete trigger on the CUSTOMER block of the CUSTOMERS form prevents
deletion of rows if there are existing orders for the customer.

DECLARE
CURSOR C1 IS
SELECT ’anything’ FROM ORDERS
WHERE customer_id = :CUSTOMERS.customer_id;

BEGIN
OPEN C1;
FETCH C1 INTO :GLOBAL.dummy;
IF C1%FOUND THEN

CLOSE C1;
MESSAGE(’There are orders for this

customer!’);
RAISE form_trigger_failure;

ELSE
CLOSE C1;

END IF;
END;

Instructor Note
In the preceding example, a local PL/SQL variable could be used rather than a global
variable. When the block terminates, a PL/SQL variable ceases to exist. A global
variable exists for the session.

Oracle Forms Developer 10g: Build Internet Applications 21-16

21-16 Copyright © 2004, Oracle. All rights reserved.

Assigning Sequence Numbers

Pre-Insert Insert

Database

601 Value Value

ID

Sequence

SELECT ORDERS_SEQ.nextval

INTO :ORDERS.order_id

FROM SYS.dual;

601

602

Assigning Sequence Numbers to Records
You will recall that you can assign default values for items from an Oracle sequence, to
automatically provide unique keys for records on their creation. However, if the user does
not complete a record, the assigned sequence number is “wasted.”
An alternative method is to assign unique keys to records from a Pre-Insert trigger,
just before their insertion in the base table, by which time the user has completed the
record and issued the Save.
Assigning unique keys in the posting phase can:

• Reduce gaps in the assigned numbers
• Reduce data traffic on record creation, especially if records are discarded before

saving

Oracle Forms Developer 10g: Build Internet Applications 21-17

Assigning Sequence Numbers to Records (continued)
Example
This Pre-Insert trigger on the ORDERS block assigns an Order ID from the sequence
ORDERS_SEQ, which will be written to the ORDER_ID column when the row is
subsequently inserted.

SELECT ORDERS_SEQ.nextval
INTO :ORDERS.order_id
FROM SYS.dual;

Note: The Insert Allowed and Keyboard Navigable properties on
:ORDERS.order_id should be No, so that the user does not enter an ID manually.
You can also assign sequence numbers from a table. If you use this method, then two
transactional triggers are usually involved:

• Use Pre-Insert to select the next available number from the sequence table
(locking the row to prevent other users from selecting the same value) and
increment the value by the required amount.

• Use Post-Insert to update the sequence table, recording the new upper value for
the sequence.

Instructor Note
Demonstration
In the demonstration form that you are building:

• Create the Pre-Insert trigger, shown above, in the ORDERS block.
• Generate and run to show effects, noting that the assigned sequence number

appears when the new record is saved.

Oracle Forms Developer 10g: Build Internet Applications 21-18

21-18 Copyright © 2004, Oracle. All rights reserved.

Keeping an Audit Trail

• Write changes to nonbase tables.
• Gather statistics on applied changes.

Post-Insert example:

:GLOBAL.insert_tot :=

TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

Keeping an Audit Trail
You may want to use the Post event transactional triggers to record audit information
about the changes applied to base tables. In some cases, this may involve duplicating
inserts or updates in backup history tables, or recording statistics each time a DML
operation occurs.
If the base table changes are committed at the end of the transaction, the audit information
will also be committed.
Example
This Post-Update trigger writes the current record ID to the UPDATE_AUDIT table,
along with a time stamp and the user who performed the update.

INSERT INTO update_audit (id, timestamp, who_did_it)
VALUES (:ORDERS.order_id, SYSDATE, USER);

Example
This Post-Insert trigger adds to a running total of Inserts for the transaction, which is
recorded in the global variable INSERT_TOT.

:GLOBAL.insert_tot :=
TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

Oracle Forms Developer 10g: Build Internet Applications 21-19

21-19 Copyright © 2004, Oracle. All rights reserved.

Testing the Results of Trigger DML

• SQL%FOUND
• SQL%NOTFOUND
• SQL%ROWCOUNT

UPDATE ORDERS

SET order_date = SYSDATE

WHERE order_id = :ORDERS.order_id;

IF SQL%NOTFOUND THEN

MESSAGE(’Record not found in database’);

RAISE form_trigger_failure;

END IF;

Testing the Results of Trigger DML
When you perform DML in transactional triggers, you may need to test the results.
Unlike SELECT statements, DML statements do not raise exceptions when zero or
multiple rows are processed. PL/SQL provides some useful attributes for obtaining results
from the implicit cursor used to process the latest SQL statement (in this case, DML).
Obtaining Cursor Information in PL/SQL

PL/SQL Cursor Attribute Values
SQL%FOUND TRUE: Indicates > 0 rows processed

FALSE: Indicates 0 rows processed
SQL%NOTFOUND TRUE: Indicates 0 rows processed

FALSE: Indicates > 0 rows processed
SQL%ROWCOUNT Integer indicating the number of rows processed

Oracle Forms Developer 10g: Build Internet Applications 21-20

21-20 Copyright © 2004, Oracle. All rights reserved.

Testing the Results of Trigger DML

• SQL%FOUND
• SQL%NOTFOUND
• SQL%ROWCOUNT

UPDATE S_ORD

SET date_shipped = SYSDATE

WHERE id = :S_ORD.id;

IF SQL%NOTFOUND THEN

MESSAGE(’Record not found in database’);

RAISE form_trigger_failure;

END IF;

Testing the Results of Trigger DML (continued)
Obtaining Cursor Information in PL/SQL (continued)
Example
This When-Button-Pressed trigger records the date of posting as the date ordered for the
current Order record. If a row is not found by the UPDATE statement, an error is
reported.

UPDATE ORDERS
SET order_date = SYSDATE
WHERE order_id = :ORDERS.order_id;

IF SQL%NOTFOUND THEN
MESSAGE(’Record not found in database’);
RAISE form_trigger_failure;

END IF;

Note: Triggers containing base table DML can adversely affect the usual behavior of your
form, because DML statements can cause some of the rows in the database to lock.

Oracle Forms Developer 10g: Build Internet Applications 21-21

21-21 Copyright © 2004, Oracle. All rights reserved.

DML Statements Issued
During Commit Processing

INSERT INTO base_table (base_column, base_column,...)

VALUES (:base_item, :base_item, ...)

UPDATE base_table

SET base_column = :base_item, base_column =

:base_item, ...

WHERE ROWID = :ROWID

DELETE FROM base_table

WHERE ROWID = :ROWID

DML Statements Issued During Commit Processing
If you have not altered default commit processing, Forms issues DML statements at
commit time for each database record that is inserted, updated, or deleted.

INSERT INTO base_table (base_column, base_column, ...)
VALUES (:base_item, :base_item, ...)

UPDATE base_table
SET base_column = :base_item, base_column = :base_item, ...

WHERE ROWID = :ROWID

DELETE FROM base_table
WHERE ROWID = :ROWID

Oracle Forms Developer 10g: Build Internet Applications 21-22

21-22 Copyright © 2004, Oracle. All rights reserved.

DML Statements Issued During
Commit Processing

Rules:
• DML statements may fire database triggers.
• Forms uses and retrieves ROWID.
• The Update Changed Columns Only and Enforce

Column Security properties affect UPDATE
statements.

• Locking statements are not issued.

DML Statements Issued During Commit Processing (continued)
Rules

• These DML statements may fire associated database triggers.
• Forms uses the ROWID construct only when the Key mode block property is set to

Unique (or Automatic, the default). Otherwise, the primary key is used to construct
the WHERE clause.

• If Forms successfully inserts a row in the database, it also retrieves the ROWID for
that row.

• If the Update Changed Columns Only block property is set to Yes, only base
columns with changed values are included in the UPDATE statement.

• If the Enforce Column Security block property is set to Yes, all base columns for
which the current user has no update privileges are excluded from the UPDATE
statement.

Locking statements are not issued by Forms during default commit processing; they are
issued as soon as a user updates or deletes a record in the form. If you set the Locking
mode block property to delayed, Forms waits to lock the corresponding row until commit
time.

Oracle Forms Developer 10g: Build Internet Applications 21-23

21-23 Copyright © 2004, Oracle. All rights reserved.

Overriding Default Transaction Processing

Additional transactional triggers:

On-Check-Unique

On-Column-Security

On-Commit

On-Rollback

On-Savepoint

On-Sequence-Number

CHECK_RECORD_UNIQUENESS

ENFORCE_COLUMN_SECURITY

COMMIT_FORM

ISSUE_ROLLBACK

ISSUE_SAVEPOINT

GENERATE_SEQUENCE_NUMBER

Trigger Do-the-Right-Thing Built-in

Note: These triggers are meant to be used when connecting to
data sources other than Oracle.

Overriding Default Transaction Processing
You have already seen that some commit triggers can be used to replace the default DML
statements that Forms issues during commit processing. You can use several other triggers
to override the default transaction processing of Forms.
Transactional Triggers
All triggers that are related to accessing a data source are called transactional triggers.
Commit triggers form a subset of these triggers. Other examples include triggers that fire
during logon and logout or during queries performed on the data source.

Oracle Forms Developer 10g: Build Internet Applications 21-24

21-24 Copyright © 2004, Oracle. All rights reserved.

Overriding Default Transaction Processing

Transactional triggers for logging on and off:

Pre-Logon

Pre-Logout

On-Logon

On-Logout

Post-Logon

Post-Logout

-

-

LOGON

LOGOUT

-

-

Trigger Do-the-Right-Thing Built-in

Overriding Default Transaction Processing (continued)
Transactional Triggers for Logging on and off

Uses of Transactional Triggers
• Transactional triggers, except for the commit triggers, are primarily intended to

access certain data sources other than Oracle.
• The logon and logoff transactional triggers can also be used with Oracle databases to

change connections at run time.

Instructor Note
There are more transactional triggers, but those covered here are the most important.

Trigger Do-the-Right-Thing Built-In
Pre-Logon -
Pre-Logout -
On-Logon LOGON
On-Logout LOGOUT
Post-Logon -
Post-Logout -

Oracle Forms Developer 10g: Build Internet Applications 21-25

21-25 Copyright © 2004, Oracle. All rights reserved.

Running Against Data Sources
Other than Oracle

• Two ways to run against data sources other than
Oracle:
– Oracle Transparent Gateways
– Write appropriate transactional triggers

Running Against Data Sources Other than Oracle
Two ways to run Against Data Sources Other than Oracle

• Use Oracle Transparent Gateway products.
• Write the appropriate set of Transactional triggers.

Connecting with Open Gateway
When you connect to a data source other than Oracle with an Open Gateway product, you
should be aware of these transactional properties:

• Cursor mode form module property
• Savepoint mode form module property
• Key mode block property
• Locking mode block property

You can set these properties to specify how Forms should interact with your data source.
The specific settings depend on the capabilities of the data source.
Using Transactional Triggers
If no Open Gateway drivers exist for your data source, you must define transactional
triggers. From these triggers, you must call 3GL programs that implement the access to
the data source.

Oracle Forms Developer 10g: Build Internet Applications 21-26

21-26 Copyright © 2004, Oracle. All rights reserved.

Running Against Data Sources
Other than Oracle

• Connecting with Open Gateway:
– Cursor and Savepoint mode form module properties
– Key mode and Locking mode block properties

• Using transactional triggers:
– Call 3GL programs
– Database data block property

Running Against Data Sources Other than Oracle (continued)
Database Data Block Property
This block property identifies a block as a transactional control block; that is, a control
block that should be treated as a base table block. Setting this property to Yes ensures that
transactional triggers will fire for the block, even though it is not a base table block. If you
set this property to Yes, you must define all On-Event transactional triggers, otherwise
you will get an error during form generation.

Instructor Note
Oracle no longer ships the Open Client Adaptor (OCA) for accessing databases through
ODBC rather than SQL*Net. The stated replacement for OCA is to use the Oracle
Transparent Gateways as a way to access data in databases such as Microsoft SQL Server
or IBM DB2. In the initial releases of Forms 9i and 10g, however, you cannot access via
the transparent gateways due to the lack of support in the gateways for “Select For
Update” to enable row level locking. This deficiency will be addressed in a future release
of Oracle Forms.

Oracle Forms Developer 10g: Build Internet Applications 21-27

21-27 Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• Commit status: Determines how record will be
processed

• SYSTEM.RECORD_STATUS:
– NEW
– INSERT (also caused by control items)
– QUERY
– CHANGED

• SYSTEM.BLOCK_STATUS:
– NEW (may contain records with status INSERT)
– QUERY (also possible for control block)
– CHANGED (block will be committed)

• SYSTEM.FORM_STATUS: NEW, QUERY, CHANGED

Getting and Setting the Commit Status
If you want to process a record in your form, it is often useful to know if the record is in
the database or if it has been changed, and so on. You can use system variables and built-
ins to obtain this information.
What is the Commit Status of a Record?
The commit status of a record of a base table block determines how the record will be
processed during the next commit process. For example, the record can be inserted,
updated, or not processed at all.

Oracle Forms Developer 10g: Build Internet Applications 21-28

Value Description
NEW Indicates that all records of the block have the status NEW (Note that a

base table block with the status NEW may also contain records with the
status INSERT caused by changing control items.)

QUERY Indicates that all records of the block have the status QUERY if the block
is a base table block (A control block has the status QUERY if it contains
at least one record with the status INSERT.)

CHANGED Indicates that the block contains at least one record with the status
INSERT or CHANGED if the block is a base table block (The block will
be processed during the next commit process. Note that a control block
cannot have the status CHANGED.)

Value Description
NEW Indicates that the record has been created, but that none of its items have

been changed yet (The record may have been populated by default
values.)

INSERT Indicates that one or more of the items in a newly created record have
been changed (The record will be processed as an insert during the next
commit process if its block has the CHANGED status; see below. Note
that when you change a control item of a NEW record, the record status
also becomes INSERT.)

QUERY Indicates that the record corresponds to a row in the database, but that
none of its base table items have been changed

CHANGED Indicates that one or more base table items in a database record have been
changed (The record will be processed as an update (or delete) during the
next commit process.)

Getting and Setting the Commit Status (continued)
The four values of SYSTEM.RECORD_STATUS

The three values of SYSTEM.BLOCK_STATUS

The three values of SYSTEM.FORM_STATUS
Value Description
NEW Indicates that all blocks of the form have the status NEW
QUERY Indicates that at least one block of the form has status QUERY and all

other blocks have the status NEW
CHANGED Indicates that at least one block of the form has the status CHANGED

Oracle Forms Developer 10g: Build Internet Applications 21-29

21-29 Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• System variables versus built-ins for commit
status

• Built-ins for getting and setting commit status:
– GET_BLOCK_PROPERTY
– GET_RECORD_PROPERTY
– SET_RECORD_PROPERTY

Using Built-ins to Get the Commit Status
The system variables SYSTEM.RECORD_STATUS and SYSTEM.BLOCK_STATUS
apply to the record and block where the cursor is located. You can use built-ins to obtain
the status of other blocks and records.

Built-in Description
GET_BLOCK_PROPERTY Use the STATUS property to obtain the block

status of the specified block.
GET_RECORD_PROPERTY Use the STATUS property to obtain the record

status of the specified record in the specified block.
SET_RECORD_PROPERTY Set the STATUS property of the specified record in

the specified block to one of the following
constants:
• NEW_STATUS
• INSERT_STATUS
• QUERY_STATUS
• CHANGED_STATUS

Oracle Forms Developer 10g: Build Internet Applications 21-30

21-30 Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• Example: If the third record of block ORDERS is a
changed database record, set the status back to
QUERY.

• Warnings:
– Do not confuse commit status with validation

status.
– The commit status is updated during validation.

Using Built-ins to Get the Commit Status (continued)
Example
If the third record of the ORDERS block is a changed database record, set the status back
to QUERY.

BEGIN
IF GET_RECORD_PROPERTY(3, ’ORDERS’,status)= ’CHANGED’
THEN

SET_RECORD_PROPERTY(3, ’ORDERS’, status,
query_status);

END IF;
END;

Oracle Forms Developer 10g: Build Internet Applications 21-31

21-31 Copyright © 2004, Oracle. All rights reserved.

Array DML

• Performs array inserts, updates, and deletes
• Vastly reduces network traffic

Fewer round trips
(exact number depends

on array size)
2 inserts

2 updates

1 delete
Database

Empno Ename Job Hiredate

1234 Jones Clerk 01-Jan-1995

1235 Smith Clerk 01-Jan-1995

1236 Adams Clerk 01-Jan-1995

1237 Clark Clerk 01-Jan-1995

Array Processing
Overview
Array processing is an option in Forms Builder that alters the way records are processed.
The default behavior of Forms is to process records one at a time. By enabling array
processing, you can process groups of records at a time, reducing network traffic and
thereby increasing performance. This is especially important in Web applications. With
array processing, a structure (an array) containing multiple records is sent to or returned
from the server for processing.
Forms Builder supports both array fetch processing and array DML processing. For both
querying and DML operations, you can determine the array size to optimize performance
for your needs. This lesson focuses on array DML processing.
Array processing is available for query and DML operations for blocks based on tables,
views, procedures, and subqueries; it is not supported for blocks based on transactional
triggers.

Oracle Forms Developer 10g: Build Internet Applications 21-32

21-32 Copyright © 2004, Oracle. All rights reserved.

Effect of Array DML
on Transactional Triggers

Array DML Size = 1 Array DML Size > 1

Fires
Fires for each
insert, update,
delete

Fires for each
insert, update,
delete

Repeated
for each
insert,
update,
delete

POST-

PRE-

DML

Fires

DML

POST-

PRE-

Array Processing (continued)
Effect of array DML on Transactional Triggers
With DML Array Size set to 1, the Pre-Insert, Pre-Update, and Pre-Delete triggers fire for
each new, changed, and deleted record; the DML is issued, and the Post- trigger for that
record fires.
With DML Array Size set to greater than 1, the appropriate Pre- triggers fire for all of the
new, changed, and deleted rows; all of the DML statements are issued, and all of the Post-
triggers fire.
If you change 100 rows and DML Array Size is 20, you get 100 Pre- triggers, 5 arrays of
20 DML statements, and 100 Post- triggers.

Instructor Note
Some students may ask why DML Array Size is not always set to a very large number.
There is a point of diminishing return. If each record is very large, a large array size might
result in records being broken into multiple packets.
If you write On-DML triggers, you overwrite default transaction processing and cancel
array processing.

Oracle Forms Developer 10g: Build Internet Applications 21-33

21-33 Copyright © 2004, Oracle. All rights reserved.

Implementing Array DML

1. Enable the Array Processing option.
2. Specify a DML Array Size of greater than 1.
3. Specify block primary keys.

How to Implement Array DML
1. To set preferences:

Select Edit > Preferences.
Click the Runtime tab.
Select the Array Processing check box.

2. To set properties:
In the Object Navigator, select the Data Blocks node.
Double-click the Data Blocks icon to display the Property Palette.
Under the Advanced Database category, set the DML Array Size property to a
number that represents the number of records in the array for array processing.
You can also set this property programmatically.

Note: When the DML Array Size property is greater than 1, you must specify the primary
key. Key mode can still be unique.
The Oracle server uses the ROWID to identify the row, except after an array insert. If you
update a record in the same session that you inserted it, the server locks the record by
using the primary key.

Oracle Forms Developer 10g: Build Internet Applications 21-34

21-34 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• To apply changes to the database, Forms issues

post and commit.
• The commit sequence of events:

1. Validate the form.
2. Process savepoint.
3. Fire Pre-Commit.
4. Validate the block (performed for all blocks in

sequential order).

Summary
This lesson showed you how to build triggers that can perform additional tasks during the
save stage of a current database transaction.

• Transactions are processed in two phases:
Post: Applies form changes to the base tables and fires transactional triggers
Commit: Commits the database transaction

• Flow of commit processing

Oracle Forms Developer 10g: Build Internet Applications 21-35

21-35 Copyright © 2004, Oracle. All rights reserved.

Summary

5. Perform the DML:
Delete records: Fire Pre-Delete, delete row or fire
On-Delete, fire Post-Delete trigger
Insert records: Copy Value From Item, fire
Pre-Insert, check record uniqueness, insert row or
fire On-Insert, fire Post-Insert
Update records: Fire Pre-Update, check record
uniqueness, update row or fire On-Update, fire
Post-Update

6. Fire Post-Forms-Commit trigger.
If the current operation is COMMIT, then:

7. Issue an SQL-COMMIT statement.
8. Fire the Post-Database-Commit trigger.

Oracle Forms Developer 10g: Build Internet Applications 21-36

21-36 Copyright © 2004, Oracle. All rights reserved.

Summary

• You can supplement transaction processing with
triggers:
– Pre-Commit: Fires once if form changes are made

or uncommitted changes are posted
– [Pre | Post] – [Update | Insert | Delete]
– On- [Update | Insert | Delete]:

Fires per record, replacing default DML on row
Perform default functions with built-ins:
[UPDATE|INSERT|DELETE]_RECORD

Summary (continued)
• DML statements issued during commit processing:

Based on base table items
UPDATE and DELETE statements use ROWID by default

• Characteristics of commit triggers:
The Pre-Commit, Post-Forms-Commit, and Post-Database-Commit triggers
fire once per commit process, but consider uncommitted changes or posts.
The Pre-, On-, and Post-Insert, Update, and Delete triggers fire once per
processed record.

Oracle Forms Developer 10g: Build Internet Applications 21-37

21-37 Copyright © 2004, Oracle. All rights reserved.

Summary

• Use the Pre-Insert trigger to allocate sequence
numbers to records as they are applied to tables.

• Check or change commit status:
– GET_BLOCK_PROPERTY, [GET |

SET]_RECORD_STATUS
– :SYSTEM.[FORM | BLOCK | RECORD]_STATUS

• Use transactional triggers to override or augment
default commit processing.

• Reduce network roundtrips by setting DML Array
Size block property to implement Array DML.

Summary (continued)
• Common uses for commit triggers: Check authorization, set up special locking

requirements, generate sequence numbers, check complex constraints, replace
default DML statements issued by Forms.

• Overriding default transaction processing:
Transactional On-<Event> triggers and “Do-the-Right-Thing” built-ins
Data sources other than Oracle use Transparent Gateway or transactional
triggers

• Getting and setting the commit status:
System variables
Built-ins

• Array DML

Oracle Forms Developer 10g: Build Internet Applications 21-38

21-38 Copyright © 2004, Oracle. All rights reserved.

Practice 21 Overview

This practice covers the following topics:
• Automatically populating order IDs by using a

sequence
• Automatically populating item IDs by adding the

current highest order ID
• Customizing the commit messages in the

CUSTOMERS form
• Customizing the login screen in the CUSTOMERS

form

Practice 21 Overview
In this practice, you add transactional triggers to the ORDGXX form to automatically
provide sequence numbers to records at save time. You also customize commit messages
and the login screen in the CUSTGXX form.

• Automatically populating order IDs by using a sequence
• Automatically populating item IDs by adding the current highest order ID
• Customizing the commit messages in the CUSTOMERS form
• Customizing the login screen in the CUSTOMERS form

Note: For solutions to this practice, see Practice 21 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 21-39

Practice 21
1. In the ORDGXX form, write a transactional trigger on the ORDERS block that

populates ORDERS.Order_Id with the next value from the ORDERS_SEQ
sequence. You can import the code from pr21_1.txt.

2. In the ORDERS block, set the Enabled property for the Order_ID item to No. Set the
Required property for the Order_ID item to No. To ensure that the data remains
visible, set the Background Property to gray.

3. Save, compile, and run the form to test.
4. Create a similar trigger on the ORDER_ITEMS block that assigns the Line_Item_Id

when a new record is saved. Set the properties for the item as you did on
ORDERS.ORDER_ID. You can import the code from pr21_4.txt.

5. Save and compile the form. Click Run Form to run the form and test the changes.
6. Open the CUSTGXX form module. Create three global variables called

GLOBAL.INSERT, GLOBAL.UPDATE, and GLOBAL.DELETE. These variables
indicate respectively the number of inserts, updates, and deletes. You need to write
Post-Insert, Post-Update, and Post-Delete triggers to initialize and increment the
value of each global variable.

7. Create a procedure called HANDLE_MESSAGE. Import the pr21_7a.txt file.
This procedure receives two arguments. The first one is a message number, and the
second is a Boolean error indicator. This procedure uses the three global variables to
display a customized commit message and then erases the global variables.
Call the procedure when an error occurs. Pass the error code and an error message to
be displayed. You can import the code from pr21_7b.txt.
Call the procedure when a message occurs. Pass the message code and a message to
be displayed. You can import the code from pr21_7c.txt.

8. Write an On-Logon trigger to control the number of connection tries. Use the
LOGON_SCREEN built-in to simulate the default login screen and LOGON to
connect to the database. You can import the pr21_8.txt file.

9. Click Run Form to run the form and test the changes.

Instructor Note
Solution 21-4 is not the safest way. The better solution is to keep the total number of rows
in another table that you can lock, but this solution is too advanced at this stage.

Copyright © 2004, Oracle. All rights reserved.

Writing Flexible Code

Schedule: Timing Topic
40 minutes Lecture
30 minutes Practice
70 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 22-2

22-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe flexible code
• State the advantages of using system variables
• Identify built-in subprograms that assist flexible

coding
• Write code to reference objects:

– By internal ID
– Indirectly

Introduction
Overview
Forms Builder has a variety of features that enable you to write code in a flexible,
reusable way.

Oracle Forms Developer 10g: Build Internet Applications 22-3

22-3 Copyright © 2004, Oracle. All rights reserved.

What Is Flexible Code?

Flexible code:
• Is reusable
• Is generic
• Avoids hard-coded object names
• Makes maintenance easier
• Increases productivity

What Is Flexible Code?
Flexible code is code that you can use again. Flexible code is often generic code that you
can use in any form module in an application. It typically includes the use of system
variables instead of hard-coded object names.
Why Write Flexible Code?
Writing flexible code gives you the following advantages:

• It is easier for you and others to maintain.
• It increases productivity.

Oracle Forms Developer 10g: Build Internet Applications 22-4

22-4 Copyright © 2004, Oracle. All rights reserved.

Using System Variables for
Current Context

• Input focus:
– SYSTEM.CURSOR_BLOCK
– SYSTEM.CURSOR_RECORD
– SYSTEM.CURSOR_ITEM
– SYSTEM.CURSOR_VALUE

IF :SYSTEM.CURSOR_BLOCK = ’ORDERS’ THEN

GO_BLOCK(’ORDER_ITEMS’);

ELSIF :SYSTEM.CURSOR_BLOCK = ’ORDER_ITEMS’ THEN

GO_BLOCK(’INVENTORIES’);

ELSIF :SYSTEM.CURSOR_BLOCK = ’INVENTORIES’ THEN

GO_BLOCK(’ORDERS’);

END IF;

Using System Variables for Current Context
In this lesson, you use the system variables that provide the current status of the record,
the block, and the form, as well as system variables that return the current input focus
location.
System Variables for Locating Current Input Focus

Example
The example above shows code that could be put in a When-Button-Pressed trigger
to enable users to navigate to another block in the form. It tests the current block name,
then navigates depending on the result.
Note: Be sure to set the button’s Mouse Navigate property to No; otherwise the
:SYSTEM.CURSOR_BLOCK will always be the block on which the button is located.

System Variable Function
CURSOR_BLOCK The block that has the input focus
CURSOR_RECORD The record that has the input focus
CURSOR_ITEM The item and block that has the input focus
CURSOR_VALUE The value of the item with the input focus

Oracle Forms Developer 10g: Build Internet Applications 22-5

22-5 Copyright © 2004, Oracle. All rights reserved.

Using System Variables for
Current Context

• Trigger focus:
– SYSTEM.TRIGGER_BLOCK
– SYSTEM.TRIGGER_RECORD
– SYSTEM.TRIGGER_ITEM

Using System Variables for Current Context (continued)
System Variables for Locating Trigger Focus

Uses for Trigger Focus Variables
The variables for locating trigger focus are useful for navigating back to the initial block,
record, and item after the trigger code completes. For example, the trigger code may
navigate to other blocks, records, or items to perform actions upon them, but after the
trigger fires, you may want the cursor to be in the same item instance that it was in
originally. Because the navigation in the trigger occurs behind the scenes, the user will not
even be aware of it.
Note: The best way to learn about system variables is to look at their values when a form
is running. You can examine the system variables by using the Debugger.

System Variable Function
TRIGGER_BLOCK The block that the input focus was in when the trigger

initially fired
TRIGGER_RECORD The number of the record that Forms is processing
TRIGGER_ITEM The block and item that the input focus was in when the

trigger initially fired

Oracle Forms Developer 10g: Build Internet Applications 22-6

22-6 Copyright © 2004, Oracle. All rights reserved.

System Status Variables

When-Button-Pressed

ENTER;

IF :SYSTEM.BLOCK_STATUS = ’CHANGED’ THEN

COMMIT_FORM;

END IF;

CLEAR_BLOCK;

System Variables for Determining the Current Status of the Form
You can use these system status variables presented in the previous lesson to write the
code that performs one action for one particular status and a different action for another:
• SYSTEM.RECORD_STATUS
• SYSTEM.BLOCK_STATUS
• SYSTEM.FORM_STATUS

The example in the slide performs a commit before clearing a block if there are changes to
commit within that block.

Oracle Forms Developer 10g: Build Internet Applications 22-7

22-7 Copyright © 2004, Oracle. All rights reserved.

GET_<object>_PROPERTY
Built-Ins

• GET_APPLICATION_PROPERTY
• GET_FORM_PROPERTY
• GET_BLOCK_PROPERTY
• GET_RELATION_PROPERTY
• GET_RECORD_PROPERTY
• GET_ITEM_PROPERTY
• GET_ITEM_INSTANCE_PROPERTY

Using Built-In Subprograms for Flexible Coding
Some of Forms Builder built-in subprograms provide the same type of run-time status
information that built-in system variables provide.
GET_APPLICATION_PROPERTY

The GET_APPLICATION_PROPERTY built-in returns information about the current
Forms application.
Example
The following example captures the username and the operating system information:

:GLOBAL.username := GET_APPLICATION_PROPERTY(USERNAME);
:GLOBAL.o_sys :=
GET_APPLICATION_PROPERTY(OPERATING_SYSTEM);

Note: The GET_APPLICATION_PROPERTY built-in returns information about the
Forms application running on the middle tier. If you require information about the client
machine, you can use a JavaBean.

Oracle Forms Developer 10g: Build Internet Applications 22-8

22-8 Copyright © 2004, Oracle. All rights reserved.

GET_<object>_PROPERTY
Built-Ins

• GET_LOV_PROPERTY
• GET_RADIO_BUTTON_PROPERTY
• GET_MENU_ITEM_PROPERTY
• GET_CANVAS_PROPERTY
• GET_TAB_PAGE_PROPERTY
• GET_VIEW_PROPERTY
• GET_WINDOW_PROPERTY

Using Built-In Subprograms for Flexible Coding (continued)
GET_BLOCK_PROPERTY

The GET_BLOCK_PROPERTY built-in returns information about a specified block.
Example
To determine the current record that is visible at the first (top) line of a block:

...GET_BLOCK_PROPERTY(’blockname’,top_record)...

GET_ITEM_PROPERTY

The GET_ITEM_PROPERTY built-in returns information about a specified item.
Example
To determine the canvas that the item with the input focus displays on, use:

DECLARE
cv_name varchar2(30);
BEGIN

cv_name :=
GET_ITEM_PROPERTY(:SYSTEM.CURSOR_ITEM,item_canvas);
...

Oracle Forms Developer 10g: Build Internet Applications 22-9

22-9 Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY
Built-Ins

• SET_APPLICATION_PROPERTY
• SET_FORM_PROPERTY
• SET_BLOCK_PROPERTY
• SET_RELATION_PROPERTY
• SET_RECORD_PROPERTY
• SET_ITEM_PROPERTY
• SET_ITEM_INSTANCE_PROPERTY

SET_<object>_PROPERTY Built-Ins
SET_ITEM_INSTANCE_PROPERTY

The SET_ITEM_INSTANCE_PROPERTY built-in modifies the specified instance of an
item in a block by changing the specified item property.
Example
The following example sets the visual attribute to VA_CURR for the current record of the
current item:

SET_ITEM_INSTANCE_PROPERTY(:SYSTEM.CURSOR_ITEM,
VISUAL_ATTRIBUTE, CURRENT_RECORD, ’VA_CURR’);

SET_MENU_ITEM_PROPERTY

The SET_MENU_ITEM_PROPERTY built-in modifies the given properties of a menu
item.
Example
To enable the save menu item in a file menu:

SET_MENU_ITEM_PROPERTY(’FILE.SAVE’,ENABLED,PROPERTY_TRUE);

Oracle Forms Developer 10g: Build Internet Applications 22-10

22-10 Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY
Built-Ins

• SET_LOV_PROPERTY
• SET_RADIO_BUTTON_PROPERTY
• SET_MENU_ITEM_PROPERTY
• SET_CANVAS_PROPERTY
• SET_TAB_PAGE_PROPERTY
• SET_VIEW_PROPERTY
• SET_WINDOW_PROPERTY

SET_<object>_PROPERTY Built-Ins (continued)
SET_TAB_PAGE_PROPERTY

The SET_TAB_PAGE_PROPERTY built-in sets the tab page properties of the specified
tab canvas page.
Example
To enable tab_page_1, if it is already disabled, use:

DECLARE
tbpg_id TAB_PAGE;
BEGIN
tbpg_id := FIND_TAB_PAGE(’tab_page_1’);
IF GET_TAB_PAGE_PROPERTY(tbpg_id, enabled) = ’FALSE’
THEN

SET_TAB_PAGE_PROPERTY(tbpg_id, enabled,property_true);
END IF;
END;

Oracle Forms Developer 10g: Build Internet Applications 22-11

22-11 Copyright © 2004, Oracle. All rights reserved.

Referencing Objects by Internal ID

lov_id := FIND_LOV(’my_lov’)

...SHOW_LOV(lov_id)

...SHOW_LOV(’my_lov’)

Finding the object ID:

Referencing an object by ID:

Referencing an object by name:

ID

ID

Referencing Objects by Internal ID
Forms Builder assigns an ID to each object that you create. An object ID is an internal
value that is never displayed. You can get the ID of an object by calling the built-in
FIND_ subprogram appropriate for the object. The FIND_ subprograms require a fully
qualified object name as a parameter. For instance, when referring to an item, use
BLOCKNAME.ITEMNAME.
The return values of the FIND_ subprograms (the object IDs) are of a specific type. The
types for object IDs are predefined in Forms Builder. There is a different type for each
object.
Three Reasons for Using Object IDs

• Improving performance (Forms looks up the object only once when you initially call
the FIND_ subprogram to get the ID. When you refer to an object by name in a
trigger, Forms must look up the object ID each time.)

• Writing more generic code
• Testing whether an object exists (using the ID_NULL function and FIND_object)

Oracle Forms Developer 10g: Build Internet Applications 22-12

22-12 Copyright © 2004, Oracle. All rights reserved.

FIND_ Built-Ins

• FIND_ALERT
• FIND_BLOCK
• FIND_CANVAS
• FIND_EDITOR
• FIND_FORM
• FIND_ITEM
• FIND_LOV
• FIND_RELATION
• FIND_VIEW
• FIND_WINDOW

ID

Forms Builder FIND_ Built-Ins
The table below lists some of the FIND_ subprograms, along with the object classes that
use them and the return types they produce:

Object Class Subprogram Return Type
Alert FIND_ALERT ALERT
Block FIND_BLOCK BLOCK
Canvas FIND_CANVAS CANVAS
Editor FIND_EDITOR EDITOR
Form FIND_FORM FORMMODULE
Item FIND_ITEM ITEM
LOV FIND_LOV LOV
Relation FIND_RELATION RELATION
View FIND_VIEW VIEWPORT
Window FIND_WINDOW WINDOW

Oracle Forms Developer 10g: Build Internet Applications 22-13

22-13 Copyright © 2004, Oracle. All rights reserved.

Using Object IDs

• Declare a PL/SQL variable of the same data type.
• Use the variable for any later reference to the

object.
• Use the variable within the current PL/SQL block

only.

Declaring Variables for Object IDs
To use an object ID, you must first assign it to a variable. You must declare a variable of
the same type as the object ID.
The following example uses the FIND_ITEM built-in to assign the ID of the item that
currently has input focus to the variable id_var.
Once you assign an object ID to a variable in a trigger or PL/SQL program unit, you can
use that variable to reference the object, rather than referring to the object by name.

DECLARE
id_var item;

BEGIN
id_var := FIND_ITEM(:SYSTEM.CURSOR_ITEM);

. . .
END;

Oracle Forms Developer 10g: Build Internet Applications 22-14

22-14 Copyright © 2004, Oracle. All rights reserved.

Using Object IDs

Example:

DECLARE

item_var item;

BEGIN

item_var := FIND_ITEM(:SYSTEM.CURSOR_ITEM);

SET_ITEM_PROPERTY(item_var,position,30,55);

SET_ITEM_PROPERTY(item_var,prompt_text,’Cur

rent’);

END;

Declaring Variables for Object IDs (continued)
The following two examples show that you can pass either an item name or an item ID to
the SET_ITEM_PROPERTY built-in subprogram. The following calls are logically
equivalent:

SET_ITEM_PROPERTY(’ORDERS.order_id’,position,50,35);
SET_ITEM_PROPERTY(id_var,position,50,35);

You can use either object IDs or object names in the same argument list, provided that
each individual argument refers to a distinct object.
You cannot, however, use an object ID and an object name to form a fully qualified
object_name (blockname.itemname). The following call is illegal:

GO_ITEM(block_id.’item_name’);

Note: Use the FIND_ built-in subprograms only when referring to an object more than
once in the same trigger or PL/SQL program unit.

Oracle Forms Developer 10g: Build Internet Applications 22-15

22-15 Copyright © 2004, Oracle. All rights reserved.

Increasing the Scope of Object IDs

• A PL/SQL variable has limited scope.
• An .id extension:

– Broadens the scope
– Converts to a numeric format
– Enables assignment to a global variable
– Converts back to the object data type

Using Object IDs Outside the Initial PL/SQL Block
You have seen how object IDs are referenced within the trigger or program unit by means
of PL/SQL variables. You can reference these PL/SQL variables only in the current
PL/SQL block; however, you can increase the scope of an object ID.
To reference an object ID outside the initial PL/SQL block, you need to convert the ID to
a numeric format using an .id extension for your declared PL/SQL variable, then assign
it to a global variable.
Example
The following example of trigger code assigns the object ID to a local
PL/SQL variable (item_var) initially, then to a global variable (global.item):

DECLARE
item_var item;

BEGIN
item_var := FIND_ITEM(:SYSTEM.CURSOR_ITEM);
:GLOBAL.item := item_var.id;

END;

Oracle Forms Developer 10g: Build Internet Applications 22-16

Using Object IDs Outside the Initial PL/SQL Block (continued)
You can pass the global variable around within the application. To be able to reuse the
object ID, you need to convert it back to its original data type.
Example
The following example shows the conversion of the global variable back to its original
PL/SQL variable data type:

DECLARE
item_var item;

BEGIN
item_var.id := TO_NUMBER(:GLOBAL.item);
GO_ITEM(item_var);

END;

Oracle Forms Developer 10g: Build Internet Applications 22-17

22-17 Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

Direct reference

Indirect reference

ITEM A

Welles

ITEM B

ITEM A

ITEM A

Welles

Referencing Items Indirectly
By referencing items indirectly, you can write more generic, reusable code. Using
variables instead of actual item names, you can write a PL/SQL program unit to use any
item whose name is assigned to the indicated variable.
You can reference items indirectly with the NAME_IN and COPY built-in subprograms.
Note: Use indirect referencing when you create procedures and functions in a library
module, because direct references cannot be resolved.

Instructor Note
Check student understanding of this concept by asking them what the last sentence above
means.

Oracle Forms Developer 10g: Build Internet Applications 22-18

22-18 Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

The NAME_IN function:
• Returns:

– The contents of variable
– Character string

• Use conversion functions for NUMBER and DATE

Referencing Items Indirectly (continued)
Using the NAME_IN Built-in Function
The NAME_IN function returns the contents of an indicated variable. The following
statements are equivalent. The first one uses a direct reference to customer.name, whereas
the second uses an indirect reference:

IF :CUSTOMERS.cust_last_name = ’Welles’...

In a library, you could avoid this direct reference by using:
IF NAME_IN(’CUSTOMERS.cust_last_name’) = ’Welles’...

The return value of NAME_IN is always a character string. To use NAME_IN for a date or
number item, convert the string to the desired data type with the appropriate conversion
function. For instance:

date_var := TO_DATE(NAME_IN(’ORDERS.order_date’));

Oracle Forms Developer 10g: Build Internet Applications 22-19

22-19 Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

The COPY procedure allows:
• Direct copy:

• Indirect copy:

COPY('Welles','CUSTOMERS.cust_last_name');

COPY('Welles',NAME_IN('global.customer_name_item'));

Referencing Items Indirectly (continued)
Using the COPY Built-in Procedure
The COPY built-in assigns an indicated value to an indicated variable or item. Unlike the
standard PL/SQL assignment statement, using the COPY built-in enables you to indirectly
reference the item whose value is being set. The first example in the slide shows copying
using a direct reference to the form item.
Using COPY with NAME_IN
Use the COPY built-in subprogram with the NAME_IN built-in to indirectly assign a value
to an item whose name is stored in a global variable, as in the second example in the slide.

Instructor Note
Check student understanding of this concept by asking them what is contained in
‘GLOBAL.customer_name_item’ referenced in the last example above. Explain to
students that the name of the form item, ‘customers.cust_last_name’ was
previously assigned to the global variable, perhaps in a When-New-Form-Instance
trigger.

Oracle Forms Developer 10g: Build Internet Applications 22-20

22-20 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Flexible code is reusable, generic code that you

can use in any form module in an application.
• With system variables you can:

– Perform actions conditionally based on current
location (SYSTEM.CURSOR_[RECORD | ITEM |
BLOCK])

– Use the value of an item without knowing its name
(SYSTEM.CURSOR_VALUE)

– Navigate to the initial location after a trigger
completes: (SYSTEM.TRIGGER_[RECORD | ITEM |
BLOCK])

– Perform actions conditionally based on commit
status: SYSTEM.[RECORD | BLOCK |
FORM]_STATUS

Summary
Use the following to write flexible code:

• System variables:
To avoid hard-coding object names
To return information about the current state of the form

Oracle Forms Developer 10g: Build Internet Applications 22-21

22-21 Copyright © 2004, Oracle. All rights reserved.

Summary

• The [GET | SET]_<object>_PROPERTY built-ins are
useful in flexible coding.

• Code that references objects is more efficient and
generic:
– By internal ID: Use FIND_<object> built-ins
– Indirectly: Use COPY and NAME_IN built-ins

Summary (continued)
• GET_<object>_PROPERTY built-ins, to return current property values for Forms

Builder objects
• Object IDs, to improve performance
• Indirect referencing, to allow form module variables to be referenced in library and

menu modules

Oracle Forms Developer 10g: Build Internet Applications 22-22

22-22 Copyright © 2004, Oracle. All rights reserved.

Practice 22 Overview

This practices covers the following topics:
• Populating product images only when the image

item is displayed.
• Modifying the When-Button-Pressed trigger of

the Image_Button in order to use object IDs
instead of object names.

• Write generic code to print out the names of the
blocks in a form.

Practice 22 Overview
In this practice, you use properties and variables in the ORDGXX form to provide flexible
use of its code. You also make use of object IDs.

• Populating product images only when the image item is displayed
• Modifying the When-Button-Pressed trigger of the Image_Button in order to use

object IDs instead of object names
• Writing generic code to print out the names of blocks in a form and using the same

code in two different forms
Note: For solutions to this practice, see Practice 22 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 22-23

Practice 22
1. In the ORDGXX form, alter the code called by the triggers that populate the

Product_Image item when the image item is displayed.
Add a test in the code to check Product_Image. Perform the trigger actions only if
the image is currently displayed. Use the GET_ITEM_PROPERTY built-in function.
The code is contained in pr22_1.txt.

2. Alter the When-Button-Pressed trigger on the Image_Button so that object IDs are
used.
Use a FIND_object function to obtain the IDs of each item referenced by the trigger.
Declare variables for these IDs, and use them in each item reference in the trigger.
The code is contained in pr22_2.txt.

3. Create a button called Blocks_Button in the CONTROL block and place it on the
Toolbar canvas. Label the button Show Blocks. Set its navigation and color
properties the same as the other toolbar buttons.
The code for the button should print a message showing what block the user is
currently in. It should keep track of the block and item where the cursor was located
when the trigger was invoked (:SYSTEM.CURSOR_BLOCK and
:SYSTEM.CURSOR_ITEM). It should then loop through the remaining navigable
blocks of the form and print a message giving the names (SYSTEM.current_block)
of all the navigable blocks in the form. Finally, it should navigate back to the block
and item where the cursor was located when the trigger began to fire. Be sure to set
the Mouse Navigate property of the button to No. You may import the code for the
trigger from pr22_3.txt.

4. Save, compile, and run the form to test these features.
5. The trigger code above is generic, so it will work with any form. Open the

CUSTGXX form and define a similar Blocks_Button, labeled Show Blocks, in the
CONTROL block, and place it just under the Color button on the CV_CUSTOMER
canvas. Drag the When-Button-Pressed trigger you created for the Blocks_Button of
the ORDGXX form to the Blocks_Button of the CUSTGXX form. Run the
CUSTGXX form to test the button.

Copyright © 2004, Oracle. All rights reserved.

Sharing Objects and Code

Schedule: Timing Topic
50 minutes Lecture
30 minutes Practice
80 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 23-2

23-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the various methods for reusing objects

and code
• Inherit properties from property classes
• Group related objects for reuse
• Explain the inheritance symbols in the Property

Palette
• Reuse objects from an object library
• Reuse PL/SQL code

Introduction
Overview
Forms Builder includes some features specifically for object and code reuse. In this
lesson, you learn how to share objects between form modules using the Object Library.
You also learn how to share code using the PL/SQL Library.

Oracle Forms Developer 10g: Build Internet Applications 23-3

23-3 Copyright © 2004, Oracle. All rights reserved.

Benefits of Reusing Objects and Code

• Increases productivity
• Decreases maintenance
• Increases modularity
• Maintains standards
• Improves application performance

Benefits of Reusable Objects and Code
When you are developing applications, you should share and reuse objects and code
wherever possible in order to:

• Increase productivity: You can develop applications much more effectively and
efficiently if you are not trying to “start over” each time you write a piece of code.
By sharing and reusing frequently used objects and code, you can cut down
development time and increase productivity.

• Decrease maintenance: By creating applications that use or call the same object or
piece of code several times, you can decrease maintenance time.

• Increase modularity: Sharing and reusing code increases the modularity of your
applications.

• Maintain standards: You can maintain standards by reusing objects and code. If
you create an object once and copy it again and again, you do not run the risk of
introducing minor changes. In fact, you can create a set of standard objects and some
pieces of standard code and use them as a starting point for all of your new form
modules.

Oracle Forms Developer 10g: Build Internet Applications 23-4

Benefits of Reusable Objects and Code (continued)
• Improved application performance: When Forms Services communicates the user

interface to the Forms Client, it sends meta-data about the items on the form. This
meta-data includes values of properties that differ from the default. Once an item is
defined, the meta-data about the next item includes only those properties that differ
from the previous item. This is referred to as message diffing. Promoting similarities
among items by using the methods of object reuse presented in this lesson improves
the efficiency of message diffing and thus decreases network traffic and increases
performance.

Promoting Similarities Among Objects
One of the easiest ways a developer can increase the efficiency of network performance
through message diffing is by using consistent standards for all objects within an
application. Items of different types should at least have common values for common or
shared properties.
To maximize reuse, the developer should apply the following guidelines in the order
shown:

• Accept default properties as much as possible: If the properties are not
overwritten for each object, then the value for common properties will be the same
regardless of the the object type, except for position and size.

• Use SmartClasses to describe an object: If, because of design standards, the use of
default properties is not a viable option, then the subclassing of objects from a set of
SmartClasses ensures that the development standards are being met. It also forces a
high degree of property sharing across widgets. Items of the same type will then
have (unless overridden) the same properties and hence will be able to share
properties more effectively. You will earn about SmartClasses in this lesson.

• Use sets of visual attributes: If SmartClasses are not being used to enforce
standards and common properties then use sets of partial visual attributes to enforce
a common set of properties across objects of different types: for example, font, font
size, foreground color, background color, and so on. These sets of visual attributes
can be defined as Property Classes, as explained in the following slides.

Oracle Forms Developer 10g: Build Internet Applications 23-5

23-5 Copyright © 2004, Oracle. All rights reserved.

What Are Property Classes?

LOV

properties

Block

properties

Canvas

properties

Relation

properties

Item

properties

Property Class
What is a Property Class?
A property class is a named object that contains a list of properties and their settings.
Why use Property Classes?
Use property classes to:

• Increase productivity by setting standard or frequently used values for common
properties and associating them with several Forms Builder objects. You can use
property classes to define standard properties not just for one particular object, but
for several at a time. This results in increased productivity, because it eliminates the
time spent on setting identical properties for several objects.

• Improve network performance by increasing the efficiency of message diffing.

Oracle Forms Developer 10g: Build Internet Applications 23-6

23-6 Copyright © 2004, Oracle. All rights reserved.

Creating a Property Class

Add Property Inherit Property

Property ClassDelete Property

Creating a Property Class
When you create a property class, you have all the properties from every Forms Builder
object available. You choose the properties and their values to include in the property
class. You can create a property class in two ways:

• Using the Create button in the Object Navigator
• Using the Create Property Class button

How to Create a Property Class from the Object Navigator
1. Click the Property Class node.
2. Click Create. A new property class entry displays.
3. Add the required properties and their values using the Add Property button in the

Property Palette.
How to Create a Property Class from the Property Palette

1. In the Object Navigator, click the object whose properties you want to copy into a
property class.

2. Move to the Property Palette, select the properties you want to copy into a property
class, and click the Property Class icon. An information alert is displayed.

3. Use the Object Navigator to locate the property class and change its name.

Oracle Forms Developer 10g: Build Internet Applications 23-7

Creating a Property Class (continued)
Adding a Property
Once you create a property class, you can add a property by clicking the Add Property
button and selecting a property from the list. Set the value for that property using the
Property Palette.
You can also use the Copy Properties button and the Paste Properties button to add several
properties at a time to a property class.
Deleting a Property
You can remove properties from a property class using the Delete Property button.

Instructor Note
• Create a property class in the Property Palette.
• Create a property class in the Object Navigator.
• Include properties for different objects.
• Associate a property class with an object.

Oracle Forms Developer 10g: Build Internet Applications 23-8

23-8 Copyright © 2004, Oracle. All rights reserved.

Property palette

Default property

Inheriting from a Property Class

Default property
Default property

Property palette

Default property
Default property

Changed propertyChangeDefault property

Property
class

Apply

Property palette

Inherited property

Inherited property

Property palette

Inherited property

Inherited property

Variant property
Change

Inherited property
Inherit

Inherited property

Inheriting from a Property Class
Once you create a property class and add properties, you can use the property class. To
apply the properties from a property class to an object, use the Subclass Information
property in the Property Palette.
What is an Inherited Property?
An inherited property is one that takes its value from the property class that you
associated with the object. An inherited property is displayed with an arrow to the left of
the property name.
What is a Variant Property?
A variant property is one that has a modified value even though it is inherited from the
property class associated with the object. You can override the setting of any inherited
property to make that property variant. Variant properties are displayed with a red cross
over an arrow.

Oracle Forms Developer 10g: Build Internet Applications 23-9

23-9 Copyright © 2004, Oracle. All rights reserved.

Inheriting from a Property Class

• Set the Subclass Information property.
• Convert an inherited property to a variant

property.
• Convert a variant property to an inherited

property.
• Convert a changed property to a default property.

Inherited Property
Variant Property
Default Property

Changed Property

Inheriting from a Property Class (continued)
How to Inherit Property Values from a Property Class

1. Click the object to which you want to apply the properties from the property class.
2. Click the Subclass Information property in the Property Palette.
3. Select the property class whose properties you want to use. The object takes on the

values of that property class. Inherited properties are displayed with an arrow
symbol.

Converting an Inherited Property to a Variant Property
To convert an inherited property to a variant property, simply enter a new value over the
inherited one.
Converting a Variant Property to an Inherited Property
To convert a variant property to an inherited property, click the Inherit icon in the
Property Palette.
Converting a Changed Property to a Default Property
You can also use the Inherit icon to revert a changed property back to its default.

Oracle Forms Developer 10g: Build Internet Applications 23-10

23-10 Copyright © 2004, Oracle. All rights reserved.

What Are Object Groups?

Object groups:
• Are logical containers
• Enable you to:

– Group related objects
– Copy multiple objects in one operation

What Are Object Groups?
An object group is a logical container for a set of Forms Builder objects.
Why Use Object Groups?
You define an object group when you want to:

• Package related objects for copying or subclassing in another module
• Bundle numerous objects into higher-level building blocks that you can use again in

another application.
Example
Your application can include an appointment scheduler that you want to make available to
other applications. You can package the various objects in an object group and copy the
entire bundle in one operation.

Oracle Forms Developer 10g: Build Internet Applications 23-11

23-11 Copyright © 2004, Oracle. All rights reserved.

Creating and Using Object Groups

• Blocks include:
– Items
– Item-level triggers
– Block-level triggers
– Relations

• Object groups cannot include other object groups
• Deleting an object group does not affect the

objects
• Deleting an object affects the object group

Creating and Using Object Groups
How to Create an Object Group

1. Click the Object Group node in the Object Navigator.
2. Click the Create icon. A new object group entry is displayed.
3. Rename the new object group.
4. Click the form module and expand all.
5. Control-click all the objects of one type that you want to include in the object group.
6. Drag the selected objects into the new object group entry. The objects are displayed

as object group children.
7. Repeat steps 5 and 6 for different object types.

The objects in the object group are still displayed in their usual position in the Object
Navigator, as well as within the object group. The objects in the object group are not
duplicates, but pointers to the source objects.

Oracle Forms Developer 10g: Build Internet Applications 23-12

Creating and Using Object Groups (continued)
Things to consider when using object groups

• Including a block in an object group also includes its items, the item-level triggers,
the block-level triggers and the relations. You cannot use any of these objects in an
object group without the block.

• It is not possible to include another object group.
• Deleting an object from a module automatically deletes the object from the object

group.
• Deleting an object group from a module does not delete the objects it contains from

the module.
Subclass Information Dialog Box
The Subclass Information property of a form object shows a dialog box that provides
information about the origins of the object. You can see whether an object is local to the
form document or foreign to it. If the object is foreign to the current form, the Module
field shows the module from which the object originates. The original object name is
shown in the Object Name field.

Instructor Note
• Create an object group.
• Include a block, canvas-view, and form-level trigger.
• Point out that the objects in the object group are still visible in their respective

positions in the Object Navigator.
• Drag the object group and drop it into a second form module.

Oracle Forms Developer 10g: Build Internet Applications 23-13

23-13 Copyright © 2004, Oracle. All rights reserved.

Copying and Subclassing Objects and Code

Copying and Subclassing Objects and Code
You can copy or subclass objects:

• Between modules, by dragging objects between the modules in the Object Navigator
• Within a single module by selecting the object in the Object Navigator, pressing

[Ctrl], and dragging it to create the new object
When you drag objects, a dialog box appears that asks whether you want to copy or
subclass the object.
Copying an Object
Copying an object creates a separate, unique version of that object in the target module.
Any objects owned by the copied object are also copied.
Points to Remember

• Use copying to export the definition of an object to another module.
• Changes made to a copied object in the source module do not affect the copied

object in the target module.

Oracle Forms Developer 10g: Build Internet Applications 23-14

23-14 Copyright © 2004, Oracle. All rights reserved.

Subclassing

Company Name:
Company Code:
Balance:

Company Name:
Company Code:

Balance:

Address:
Code:

Ability
to inherit
changes

Ability
to add to
child object

Ability
to alter
properties
of child
object

Company Name:
Company Code:

Balance:

Company Name:
Company Code:

Balance:

Subclassing an Object
With subclassing you can make an exact copy, and then alter the properties of some
objects if desired. If you change the parent class, the changes also apply to the properties
of the subclassed object that you have not altered. However, any properties that you
override remain overridden. This provides a powerful object inheritance model.
When you subclass a data block, you can:

• Change the structure of the parent, automatically propagating the changes to the
child

• Add or change properties to the child to override the inheritance
When you subclass a data block you cannot:

• Delete items from the child
• Change the order of items in the child
• Add items to the child unless you add them to the end

Note: Subclassing is an object-oriented term that refers to the following capabilities:
• Inheriting the characteristics of a base class (Inheritance)
• Overriding properties of the base class (Specialization)

Oracle Forms Developer 10g: Build Internet Applications 23-15

Property Palette Icon Meaning
 Circle The value for the property is the default.
 Square The value for the property was changed from the

default.
 Arrow The value for the property was inherited.
 Arrow with red X The value for the property was inherited but

overridden (variant property).

Subclassing an Object (continued)
Ability to add to an Object
You can create an exact copy of an object, and you can add to the subclassed object. For
example, you can add additional items to the end of a subclassed block.
Ability to Alter Properties
With subclassing, you can make an exact copy and then alter the properties of some
objects. If you change the parent class, the changes also apply to the properties of the
subclassed object that you have not altered. However, any properties that you override
remain overridden.
Ability to Inherit Changes
When you change the properties of a parent object, all child objects inherit those
properties if they are not already overridden.
The child inherits changes:

• Immediately, if the parent and child objects are in the same form
• When you reload the form containing a child object

Ability to re-inherit
If you make changes to the child object to override properties of the parent object, you can
click the Inherit icon to re-inherit the property from the parent object.
Property Palette icons: Enable you to identify inherited or overridden properties.

Instructor Note
Demonstration: Open the following forms: referenced.fmb, copied.fmb, and
subclassed.fmb. The referenced.fmb module contains a block with a single
item. Open the Property Palette for that item and show that the X Position, Y Position,
Width, and Height properties are all set to 20. As you make changes in properties in this
demo, point out the different icons for inherited and overridden properties.
Drag and drop the block into copied.fmb and subclassed.fmb, copying it in the
first case and subclassing it in the second. Change the item’s Width in
referenced.fmb. Demonstrate that the change is propagated to subclassed.fmb,
but not to copied.fmb.
In subclassed.fmb, change the Height property of the item to 40. Now change the
Height property of the item in referenced.fmb to 10. Return to subclassed.fmb
and show that the overridden Height of 40 is still in effect. Select the Height property and
click the Inherit icon. Point out to students that the new Height of 10 is inherited from
referenced.fmb, not the original height of 20.

Oracle Forms Developer 10g: Build Internet Applications 23-16

23-16 Copyright © 2004, Oracle. All rights reserved.

What Are Object Libraries?

An Object Library:
• Is a convenient container of objects for reuse
• Simplifies reuse in complex environments
• Supports corporate, project,

and personal standards
• Simplifies the sharing of

reusable components
• Is separate from the

form module

What Are Object Libraries?
Object libraries are convenient containers of objects for reuse. They simplify reuse in
complex environments, and they support corporate, project, and personal standards.
An object library can contain simple objects, property classes, object groups, and program
units, but they are protected against change in the library. Objects can be used as
standards (classes) for other objects.
Object libraries simplify the sharing of reusable components. Reusing components
enables you to:

• Apply standards to simple objects, such as buttons and items, for consistent look and
feel. This also improves network performance by promoting similarities among
objects, thus increasing the efficiency of message diffing.

• Reuse complex objects such as a Navigator.
In combination with SmartClasses, which are discussed later, object libraries support both
of these requirements.

Oracle Forms Developer 10g: Build Internet Applications 23-17

What Are Object Libraries? (continued)
Why Object Libraries Instead of Object Groups?

• Object libraries are external to the form, so are easily shared among form modules.
• Object libraries can contain individual items; for example, iconic buttons. The

smallest unit accepted in an object group is a block.
• Object libraries accept PL/SQL program units.
• If you change an object in an object library, all forms that contain the subclassed

object reflect the change.

Oracle Forms Developer 10g: Build Internet Applications 23-18

23-18 Copyright © 2004, Oracle. All rights reserved.

Benefits of the Object Library

• Simplifies the sharing and reuse of objects
• Provides control and enforcement of standards
• Promotes increased network performance
• Eliminates the need to maintain multiple

referenced forms

Benefits of the Object Library
There are several advantages to using object libraries to develop applications:

• Simplifies the sharing and reuse of objects
• Provides control and enforcement of standards
• Increases the efficiency of message diffing by promoting similarity of objects, thus

increasing the performance of the application
• Eliminates the need to maintain multiple referenced forms

Oracle Forms Developer 10g: Build Internet Applications 23-19

23-19 Copyright © 2004, Oracle. All rights reserved.

Working with Object Libraries

Object Libraries:
• Appear in the Navigator if

they are open
• Are used with a simple

tabbed interface
• Are populated by

dragging Form objects to
tab page

• Are saved to .olb file

Working with Object Libraries
Object libraries appear in the Navigator if they are open. You can create, open, and close
object libraries like other modules. Forms Builder automatically opens all object libraries
that were open when you last closed Forms Builder.
It is easy to use object libraries with a simple tabbed interface. Using the Edit menu, you
can add or remove tab pages that help you to create your own groups. You can save object
libraries to a file system as .olb files.
Note: You cannot modify objects inside the object library itself. To make changes, drag
the object into a form, change it, and drag it back to the object library.
How to Populate an Object Library

1. Select Tools > Object Library to display the object library.
2. Drag objects from the Object Navigator into the object library.
3. You can edit the descriptive comment by clicking the Edit icon in the object library

interface.

Oracle Forms Developer 10g: Build Internet Applications 23-20

23-20 Copyright © 2004, Oracle. All rights reserved.

What Is a SmartClass?

• A SmartClass:
– Is an object in an object

library that is frequently
used as a class

– Can be applied easily and
rapidly to existing objects

– Can be defined in many
object libraries

– Is the preferred method to
promote similarity among
objects for performance

• You can have many
SmartClasses of a given
object type.

Check indicates
a SmartClass

Check indicates
a SmartClass

What Are SmartClasses?
A SmartClass is a special member of an Object Library. It can be used to easily subclass
existing objects in a form using the SmartClass option from the right mouse button popup
menu. To use Object Library members which are not SmartClasses, you have to use the
Subclass Information dialog available in the Property Palette of the form object that you
are modifying.
If you frequently use certain objects as standards, such as standard buttons, date items,
and alerts, you can mark them as SmartClasses by selecting each object in the object
library and choosing Edit > SmartClass.
You can mark many different objects, spread across multiple object libraries, as
SmartClasses. Other than accepting default values for all object properties, using Smart
Classes is the preferred method to promote similarities between objects for efficiency of
message diffing, resulting in better performance of applications.
You can also have many SmartClasses of a given object type, for example:

• Wide_button
• Narrow_button
• Small_iconic_button

Oracle Forms Developer 10g: Build Internet Applications 23-21

23-21 Copyright © 2004, Oracle. All rights reserved.

Working with SmartClasses

1. Right-click an object in
the Layout Editor or
Navigator.

2. From the pop-up menu,
select SmartClasses.

3. Select a class from
the list.

Working with SmartClasses
To apply a SmartClass to a Forms object, perform the following steps:

1. Right-click an object in the Layout Editor or Navigator.
2. From the pop-up menu, select SmartClasses. The SmartClasses pop-up menu lists all

the SmartClasses from all open object libraries that have the same type as the object,
and, for items, also have the same item type; for example, push button, text item..

3. Select a class for the object; it then becomes the parent class of the object. You can
see its details in the Subclass Information dialog box in the object’s Property Palette,
just like any other subclassed object.

This mechanism makes it very easy to apply classes to existing objects.

Oracle Forms Developer 10g: Build Internet Applications 23-22

23-22 Copyright © 2004, Oracle. All rights reserved.

Reusing PL/SQL

• Triggers:
– Copy and paste text
– Copy and paste within a module
– Copy to or subclass from another module
– Move to an object library

• PL/SQL program units:
– Copy and paste text
– Copy and paste within a module
– Copy to or subclass in another module
– Create a library module
– Move to an object library

Reusing PL/SQL
PL/SQL in Triggers
You can reuse the PL/SQL in your triggers by:

• Copying and pasting, using the Edit menu
• Copying to another area of the current form module, using Copy and Paste on the

menu of the right mouse button
• Copying to or subclassing from another form module, using drag and drop in the

Object Navigator
• Moving the trigger to an object library

PL/SQL Program Units
Although triggers are the primary way to add programmatic control to a Forms Builder
application, using PL/SQL program units supplement triggers, you can reuse code without
having to retype it.
With Forms Builder, you can create PL/SQL program units to hold commonly used code.
These PL/SQL program units can use parameters, which decrease the need to hard-code
object names within the procedure body.

Oracle Forms Developer 10g: Build Internet Applications 23-23

Reusing PL/SQL (continued)
You can reuse PL/SQL program units by:

• Copying and pasting, using the Edit menu
• Copying or subclassing to another form module, using drag and drop in the Object

Navigator
• Creating a library module
• Moving the program unit to an object library

Oracle Forms Developer 10g: Build Internet Applications 23-24

23-24 Copyright © 2004, Oracle. All rights reserved.

What Are PL/SQL Libraries?

Applications

Form modules
Menu modules
Report modules

.pll file

Procedures

Functions

Packages

Library

What Are PL/SQL Libraries?
A library is a collection of PL/SQL program units, including procedures, functions, and
packages. A single library can contain many program units that can be shared among the
Oracle Forms Developer modules and applications that need to use them.
A library:

• Is produced as a separate module and stored in either a file or the database
• Provides a convenient means of storing client-side code and sharing it among

applications
• Means that a single copy of program units can be used by many form, menu, or

report modules
• Supports dynamic loading of program units

Scoping of Objects
Because libraries are compiled independently of the Forms modules that use them, bind
variables in forms, menus, reports, and displays are outside the scope of the library. This
means that you cannot directly refer to variables that are local to another module, because
the compiler does not know about them when you compile the library program units.

Oracle Forms Developer 10g: Build Internet Applications 23-25

23-25 Copyright © 2004, Oracle. All rights reserved.

Writing Code for Libraries

• A library is a separate module, holding
procedures, functions, and packages.

• Direct references to bind variables are not
allowed.

• Use subprogram parameters for passing bind
variables.

• Use functions, where appropriate,
to return values.

Writing Code for PL/SQL Libraries
There are two ways to avoid direct references to bind variables:

• You can refer to global variables and system variables in forms indirectly as quoted
strings by using certain built-in subprograms.

• Write program units with IN and IN OUT parameters that are designed to accept
references to bind variables. You can then pass the names of bind variables as
parameters when calling the library program units from your Forms applications.

Example
Consider the second method listed above in the following library subprogram:

FUNCTION locate_emp(bind_value IN NUMBER) RETURN VARCHAR2 IS
v_ename VARCHAR2(15);

BEGIN
SELECT last_name INTO v_ename FROM employees
WHERE employee_id = bind_value;
RETURN(v_ename);

END;

Oracle Forms Developer 10g: Build Internet Applications 23-26

23-26 Copyright © 2004, Oracle. All rights reserved.

Creating Library Program Units

TEST

Working with PL/SQL Libraries
Creating a Library
You must first create libraries in the builder before you add program units. To do this, you
can either:

• Select File > New > PL/SQL Library from the menus (An entry for the new library
then appears in the Navigator.)

• Select the Libraries node in the Object Navigator, and select the Create tool from the
tool bar

There is a Program Units node within the library’s hierarchy in the Navigator. From this
node, you can create procedures, functions, package bodies, and specifications in the same
way as in other modules.
How to Save the Library

1. With the context set on the library, select the Save option in Forms Builder.
2. Enter the name by which the library is to be saved.

Oracle Forms Developer 10g: Build Internet Applications 23-27

23-27 Copyright © 2004, Oracle. All rights reserved.

Attach Library Dialog Box

Working with PL/SQL Libraries (continued)
How to Attach a Library
Before you can refer to a library program unit from a form, menu, report, or graphics, you
must attach the library to the modules.
To attach a library to a module:

1. Open the module that needs to be attached to the library. This may be a form, menu,
or another library module.

2. Expand the module and select the Attached Libraries node in the Navigator. When
you select Create, the Attach Library dialog box appears.

3. In the Attach Library dialog box, specify the library’s name.
4. Click Attach.
5. Save the module to which you have attached the library. This permanently records

the library attachment in the definition of this module.
Detaching a Library
To later detach a library, simply delete the library entry from the list of Attached Libraries
for that module, in the Navigator. That module will then no longer be able to reference the
library program units, either in the Builder or at run time.

Oracle Forms Developer 10g: Build Internet Applications 23-28

23-28 Copyright © 2004, Oracle. All rights reserved.

Calls and Searches

procedure ();

...function...

package.call ();
•Program Units

PROCA

PROCB

•Attached Libraries
•Database

Calls

Searches

Referencing Attached Library Program Units
You refer to library program units in the same way as those that are defined locally, or
stored in the database. Remember that objects declared in a package must be referenced
with the package name as a prefix, whether or not they are part of a library.
Program units are searched for first in the calling module, then in the libraries that are
attached to the calling module.
Example
Assume that the program units report_totals, how_many_people, and pack5.del_emps are
defined in an attached library:

report_totals(:sub1); --library procedure
v_sum := how_many_people; --library function
pack5.del_emps; --library package procedure

Oracle Forms Developer 10g: Build Internet Applications 23-29

Referencing Attached Library Program Units (continued)
When Several Libraries are Attached
You can attach several libraries to the same Oracle Forms Developer module. References
are resolved by searching through libraries in the order in which they occur in the
attachment list.
If two program units of the same name and type occur in different libraries in the
attachment list, the one in the “higher” library will be executed, since it is located first.
Creating .PLX Files
The library .PLX file is a platform-specific executable that contains no source.
When you are ready to deploy your application, you will probably want to generate a
version of your library that contains only the compiled p-code, without any source. You
can generate a .PLX file from Forms Builder or from the command line.
Example
The following command creates a run-time library named runlib1.plx based on the
open library mylib.pll:

GENERATE LIB mylib FILE runlib1;

Oracle Forms Developer 10g: Build Internet Applications 23-30

23-30 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can reuse objects or code in the following

ways:
– Property Classes
– Object Groups
– Copying and subclassing
– Object Libraries and SmartClasses

• To inherit properties from a property class, set an
item’s Subclass Information property.

• You can create an object group in one module to
make it easy to reuse related objects in other
modules.

Summary
Forms provides a variety of methods for reusing objects and code. This lesson described
how to use these methods.
Reasons to share objects and code:

• Increased productivity
• Increased modularity
• Decreased maintenance
• Maintaining standards
• Increased performance

Methods of sharing objects and code:
• Property classes
• Object groups
• Copying
• Subclassing
• Creating a library module
• Using object libraries and SmartClasses

Oracle Forms Developer 10g: Build Internet Applications 23-31

23-31 Copyright © 2004, Oracle. All rights reserved.

Summary

• Inheritance symbols in the Property Palette show
whether the value is changed, inherited,
overridden, or the default.

• You can drag objects from an object library or
mark them as SmartClasses for even easier reuse.

• You can reuse PL/SQL code by:
– Copying and pasting in the PL/SQL Editor
– Copying or subclassing
– Defining program units to call the same code at

multiple places within a module
– Creating PL/SQL library to call the same code from

multiple forms

Oracle Forms Developer 10g: Build Internet Applications 23-32

23-32 Copyright © 2004, Oracle. All rights reserved.

Practice 23 Overview

This practice covers the following topics:
• Creating an object group and using this object

group in a new form module
• Using property classes
• Creating an object library and using this object

library in a new form module
• Modifying an object in the object library and

observing the effect on subclassed objects
• Setting and using SmartClasses
• Creating a PL/SQL program unit to be called from

multiple triggers

Practice 23 Overview
In this practice, you use an object group and an object library to copy Forms Builder
objects from one form to another. You will also create a property class and use it to set
multiple properties for several objects. You set SmartClasses in the object library and use
these classes in the form module.

• Creating an object group and using this object group in a new form module
• Using property classes
• Creating an object library and using this object library in a new form module
• Modifying an object in the object library to see how the modification affects

subclassed objects
• Setting and using SmartClasses
• Creating a PL/SQL program unit to be called from multiple triggers

Note: For solutions to this practice, see Practice 23 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 23-33

Practice 23
1. In the ORDGXX form, create an object group, called Stock_Objects, consisting of

the INVENTORIES block, CV_INVENTORY canvas, and WIN_INVENTORY
window.

2. Save the form.
3. Create a new form module and copy the Stock_Objects object group into it.
4. In the new form module, create a property class called ClassA. Include the following

properties and settings:
Font Name: Arial

Format Mask: 99,999
Font Size: 8

Justification: Right
Delete Allowed: No

Background Color: DarkRed
Foreground Color: Gray

5. Apply ClassA to CV_INVENTORY and the Quantity_on_Hand item.
6. Save the form module as STOCKXX.fmb, compile, and run the form and note the

error.
7. Correct the error. Save, compile, and run the form again.
8. Create an object library and name it summit_olb.

Create two tabs in the object library called Personal and Corporate.
Add the CONTROL block, the Toolbar, and the Question_Alert from the Orders form
to the Personal tab of the object library.
Save the object library as summit.olb.

9. Create a new form, and create a data block based on the DEPARTMENTS table,
including all columns except DN. Use the Form layout style.
Drag the Toolbar canvas, CONTROL block, and Question_Alert from the object
library into the new form, and select to subclass the objects.. For proper behavior,
the DEPARTMENTS block must precede the CONTROL block in the Object
Navigator
Some items are not applicable to this form.
Set the Canvas property for the following items to NULL: Image_Button,
Stock_Button, Show_Help_Button, Product_Lov_Button, Hide_Help_Button,
Product_Image, Total.
The code of some of the triggers does not apply to this form. Set the code for the
When-Button-Pressed triggers for the above buttons to: NULL;
For the Total item, set the Calculation Mode and Summary Function properties to
None, and set the Summarized Block property to Null.
Use Toolbar as the Horizontal Toolbar canvas for this form.
Set the Window property to WINDOW1 for the Toolbar canvas.
Set the Horizontal Toolbar Canvas property to TOOLBAR for the window.

Oracle Forms Developer 10g: Build Internet Applications 23-34

Practice 23 (continued)
10. Save this form as DEPTGXX, compile, and run the form to test it.
11. Try to delete items on the Null canvas. What happens and why?
12. Change the Exit button of the Object Library’s CONTROL block to have a gray

background. Run the Departments form again to see that the Exit button is now gray.
13. Create two sample buttons, one for wide buttons and one for medium buttons, by

means of width.
Create a sample date field. Set the width and the format mask to your preferred
standard.
Drag these items to the Corporate tab of your object library.
Mark these items as SmartClasses.
Create a new form and a new data block in the form. Apply these SmartClasses in
your form. Place the Toolbar canvas in the new form.

14. In the Orders form, note the similarity of the code in the Post-Query trigger of the
Orders block and in the When-Validate-Item triggers of the Orders.Customer_Id and
Orders.Sales_Rep_Id items. Move the similar code to PL/SQL program units and
call the program units from the triggers; then run the form to test the changes.

Copyright © 2004, Oracle. All rights reserved.

Using WebUtil to Interact with the Client

Schedule: Timing Topic
30 minutes Lecture
30 minutes Practice
60 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 24-2

24-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the benefits of the WebUtil utility
• Integrate WebUtil into a form
• Use WebUtil to interact with a client machine

Introduction
Overview
Forms built-in subprograms are called on the middle-tier application server. However,
there are times when you want to be able to interact with the client machine. You can do
so with JavaBeans and PJCs, but there is a utility called WebUtil that includes much
prewritten functionality for client interaction. This lesson shows you how to use WebUtil
to interface with the client machine.

Oracle Forms Developer 10g: Build Internet Applications 24-3

24-3 Copyright © 2004, Oracle. All rights reserved.

WebUtil Overview

WebUtil is a utility that:
• Enables you to provide client-side functionality on

Win32 clients

• Consists of:
– Java classes
– Forms objects
– PL/SQL library

Forms
built-Ins

WebUtil
built-Ins

WebUtil Overview
Forms built-ins typically are executed on the application server machine. Some Forms
built-ins interact with the machine to create or read a file, read an image file, or execute
operating system commands. Although in some cases it is desirable to execute such built-
ins on the application server machine, there is often a need to perform such functionality
on the client. To do this you can use a JavaBean or PJC, but that requires that you either
write or locate prewritten components and integrate each into Forms applications.
WebUtil is a utility that enables you to easily provide client-side functionality. It consists
of a set of Java classes, Forms objects, and a PL/SQL API that enables you to execute the
many Java functions of WebUtil without knowing Java.
WebUtil must be installed and configured separately from Oracle Developer Suite 10g.
For installation and configuration instructions and much other information about WebUtil,
see the WebUtil page on OTN:
http://otn.oracle.com/products/forms/htdocs/webutil/webutil.htm
Note: The client machine must be a Windows 32-bit platform, although the middle-tier
server on which WebUtil is installed can be any platform on which Forms Services is
supported.

Oracle Forms Developer 10g: Build Internet Applications 24-4

24-4 Copyright © 2004, Oracle. All rights reserved.

Benefits of the WebUtil Utility

Why use WebUtil?
• Developer has only to code in PL/SQL (no Java

knowledge required)
• Free download (part of Forms 10g in a patch set)
• Easy to integrate into a Forms application
• Extensible
• WebUtil provides:

– Client-server parity APIs
– Client-server added value functions
– Public functions
– Utility functions
– Internal functions

Benefits of the WebUtil Utility
Why Use WebUtil?
Any Forms developer can use WebUtil to carry out complex tasks on client browser
machines by simply coding PL/SQL.
WebUtil is available as a free download from OTN, and is planned to be included in a
patch set for Forms 10g. It is very easy to integrate WebUtil into your Forms applications
using its object group and PL/SQL library, and you can easily extend it by adding your
own custom functionality while leveraging its basic structure.
You can use WebUtil to perform a multitude of tasks, enabling you to:

• Read and write text files
on the client machine

• File transfer between the client,
application server, and database

• Read client-side variables
• Manipulate client-side files
• Integrate with C code on the client
• Obtain information about the client
• Use a file selection dialog box on the

client

• Run operating system commands on the
client machine and call back into Forms

• Integrate with the browser, such as
displaying messages to the browser
window

• Perform OLE automation, such as using
Word and Excel, on the client

• Read and write client side images

Oracle Forms Developer 10g: Build Internet Applications 24-5

Benefits of the WebUtil Utility (continued)
What Functionality Is Available with WebUtil?
There is a wealth of functionality available in the utility, including the following:

• Client-server parity APIs that enable you to retrieve a file name from the client, read
or write an image to or from the client, get information about the client machine, or
perform HOST and TEXT_IO commands and OLE automation on the client
(without the WebUtil functions, these built-ins execute on the application server
machine.)

• Client-server added value functions (ported from d2kwutil, a client-server package):
CREATE_REGISTRY_KEY and DELETE_REGISTRY_KEY
GET_COMPUTER_NAME
GET_NET_CONNECTION
GET_TEMP_DIRECTORY, GET_WINDOWS_DIRECTORY, and
GET_WORKING_DIRECTORY
GET_WINDOWS_USERNAME
READ_INI_FILE and WRITE_INI_FILE
READ_REGISTRY, WRITE_REGISTRY, and WRITE_REGISTRYEX

Note: Some of these may duplicate other WebUtil functions, but are provided as an
easy way to migrate code that uses d2kwutil.

• Public functions: The core of WebUtil is a set of packages, each of which provides
an API to implement certain functionality.

WebUtil_ClientInfo Package: Contains the following functions to
obtain information about the client machine:

Instructor Note
The many functions of WebUtil are listed here just to give students an idea of the
capability of the utility. Do not cover them in detail. The client parity APIs are covered in
more detail later in this lesson.

Function Returns:
GET_DATE_TIME Date and time on client machine
GET_FILE_SEPARATOR Character used on client as file separator

(“\” on Windows)
GET_HOST_NAME Name of client machine
GET_IP_ADDRESS IP address of client (string)
GET_JAVA_VERSION JVM version that is running the Forms

applet
GET_LANGUAGE Language code of the client machine, such

as de for German
GET_OPERATING_SYSTEM Name of OS running the browser

Oracle Forms Developer 10g: Build Internet Applications 24-6

Benefits of the WebUtil Utility (continued)

WebUtil_C_API Package: Contains the following functions to call into C
libraries on the client:

Function Returns:
GET_PATH_SEPARATOR Character used on client to separate

directory locations on paths (“;” on
Windows)

GET_SYSTEM_PROPERTY Any Java system propery
GET_TIME_ZONE Time zone of client machine
GET_USER_NAME Name of user logged in to the client

Function Purpose:
IsSupported Returns True if the client is a valid

platform
RegisterFunction Returns a handle to a specified C library

function
DeregisterFunction Deregisters function and frees client

resources
Create_Parameter_List Creates a parameter list to pass to C

function
Destroy_Parameter_List Deletes a parameter list and frees its

resources
Add_Parameter Adds a parameter to the parameter list
Get_Parameter_Number
Get_Parameter_Ptr
Get_Parameter_String

Typed functions to return parameter values

Rebind_Parameter Change parameter values of the existing
parameter list to reuse it

Invoke_* Typed functions to execute a registered C
function

Parameter_List_Count Returns the number of parameter lists that
have been created

Function_Count Returns the number of functions that have
been registered

Id_Null Checks to see whether the various types
used in the package are null

Oracle Forms Developer 10g: Build Internet Applications 24-7

Benefits of the WebUtil Utility (continued)
WebUtil_File Package: Contains a new type called FILE_LIST, which is
a PL/SQL table used to pass back multiple file names; also contains the
following APIs to manipulate files and directories on the client and to display
file selection dialog boxes:

Function Purpose:
COPY_FILE
RENAME_FILE
DELETE_FILE

Copy, rename, or delete a file and return a
Boolean value to indicate success

CREATE_DIRECTORY Creates the named directory if it does not
exist; returns a Boolean value to indicate
success

DIRECTORY_ROOT_LIST Returns a FILE_LIST containing the
directory roots on the client system (the
drives on Windows)

DIRECTORY_FILTERED_LIST Returns a list of files in a directory that you
filter using wildcard characters (* and ?)

FILE_EXISTS Returns a Boolean value indicating the
existence of the specified file on the client

FILE_IS_DIRECTORY Returns a Boolean value indicating whether
the specified file is a directory

FILE_IS_HIDDEN Returns a Boolean value indicating whether
the specified file has its hidden attribute set

FILE_IS_READABLE
FILE_IS_WRITABLE

Returns a Boolean value indicating whether
the file can be read or written to

DIRECTORY_SELECTION
_DIALOG

Displays a directory selection dialog and
returns the selected directory

FILE_SELECTION_DIALOG Enables definition of File Save or File
Open dialog with configurable file filter
and returns the selected file

FILE_MULTI_SELECTION
_DIALOG

Enables definition of File Save or File
Open dialog with configurable file filter
and returns the selected files in a
FILE_LIST

GET_FILE_SEPARATOR Returns character used on the client
machine as a file separator (“\” on
Windows)

GET_PATH_SEPARATOR Returns character used on client machine to
separate directory locations on paths (“;”
on Windows)

Oracle Forms Developer 10g: Build Internet Applications 24-8

Benefits of the WebUtil Utility (continued)
WebUtil_File_Transfer Package: The WebUtil_File_Transfer
package contains APIs to transfer files to and from the client browser machine
and to display a progress bar as the transfer occurs. The following APIs are
included in the WebUtil_File_Transfer package:

WebUtil_Session Package: Provides a way to react to an interruption of
the Forms session by defining a URL to which the user is redirected if the
session ends crashes; contains the following:

Function Purpose:
URL_TO_CLIENT
URL_TO_CLIENT_WITH
 _PROGRESS

Transfers a file from a URL to the client
machine (and displays a progress bar)

CLIENT_TO_DB
CLIENT_TO_DB_WITH
 _PROGRESS

Uploads a file from the client to a database
BLOB column (and displays a progress
bar)

DB_TO_CLIENT
DB_TO_CLIENT_WITH
 _PROGRESS

Downloads file from a BLOB column in
the database to the client machine (and
displays a progress bar)

CLIENT_TO_AS
CLIENT_TO_AS_WITH
 _PROGRESS

Uploads a file from the client to the
application server (with progress bar)

AS_TO_CLIENT
AS_TO_CLIENT_WITH
 _PROGRESS

Transfers a file from the application server
to the client (with a progress bar)

IN_PROGRESS Returns True if an asynchronous update is
in progress

ASYNCHRONOUS_UPLOAD
 _SUCCESS

Returns a Boolean value indicating whether
an asynchronous upload succeeded

GET_WORK_AREA Returns a work area directory on the
application server that is private to the user

IS_AS_READABLE
IS_AS_WRITABLE

Returns True if the rules defined in the
WebUtil configuration allow the specified
file to be read or written to

Function Purpose:
ENABLE_REDIRECT_ON
 _TIMEOUT

Enables the time-out monitor and the
specification of a redirection URL

DISABLE_REDIRECT_ON
 _TIMEOUT

Switches off the monitor; if you do not call
this function before EXIT_FORM, the
redirection occurs even if the exit is normal

Oracle Forms Developer 10g: Build Internet Applications 24-9

Benefits of the WebUtil Utility (continued)
WebUtil_Host Package: Contains routines to execute commands on the
client machine. Includes two types: PROCESS_ID to hold a reference to a
client-side process, and OUTPUT_ARRAY, a PL/SQL table which holds the
VARCHAR2 output from a client-side command. The WebUtil_Host
package also contains the following functions:

Function Purpose:
HOST Runs the specified command in a

BLOCKING mode on the client and
optionally returns the return code

BLOCKING Runs the specified command in a
BLOCKING mode on the client and
optionally returns the process ID

NONBLOCKING Runs the specified command in a NON-
BLOCKING mode on the client and
optionally returns the process ID

NONBLOCKING_WITH
 _CALLBACK

Runs the specified command in a NON-
BLOCKING mode on the client and
executes a supplied trigger when the
process is complete

TERMINATE_PROCESS Kills the specified process on the client
GET_RETURN_CODE Returns the return code of a specified

process as an integer
GET_STANDARD_OUTPUT Returns an OUTPUT_ARRAY containing

output that was sent to standard output by
the specified client process

GET_STANDARD_ERROR Returns an OUTPUT_ARRAY containing
output that was sent to standard error by
the specified client process

RELEASE_PROCESS Frees resources of specified client process
GET_CALLBACK_PROCESS Returns the process ID of the finished

process when a callback trigger executes
following a command called from
NonBlocking_With_Callback

ID_NULL Tests if a process ID is null
EQUALS Tests whether two process IDs represent

the same process

Oracle Forms Developer 10g: Build Internet Applications 24-10

Benefits of the WebUtil Utility (continued)
WebUtil_Core Package: Contains mostly private functions, but you can call
the following functions:

• Utility functions: The following functions are not related to client integration, but
they can be useful:

• Internal APIs that should not be called directly
For more information about WebUtil, including a sample form that showcases its
functionality, see OTN at:
http://otn.oracle.com/products/forms/htdocs/webutil/webutil.htm

Function Purpose:
IsError Checks whether the last WebUtil call

succeeded
ErrorCode Returns the last WebUtil error code
ErrorText Returns the text of the last WebUtil error

Function Purpose:
DelimStr Provides interaction with delimited strings
Show_WebUtil_Information Calls the hidden WebUtil window to show

the version of all WebUtil components
WebUtil_Util Provides BoolToStr() function for

converting Boolean to text

Oracle Forms Developer 10g: Build Internet Applications 24-11

24-11 Copyright © 2004, Oracle. All rights reserved.

Integrating WebUtil into a Form

Library

Step 1:
Attach the

WEBUTIL library.

Integrating WebUtil into a Form
Step 1: Attaching the WebUtil Library
To use the functions of WebUtil in a Forms application, you first must attach the
webutil.pll library to any module that will use the WebUtil PL/SQL API.

Instructor Note
Demonstration: In Forms Builder, open the form WU_TEST.fmb (the sample form from
OTN) from the demo directory. Show students that the WEBUTIL library is attached to
the form. Leave the form open for additional demonstrations.

Oracle Forms Developer 10g: Build Internet Applications 24-12

24-12 Copyright © 2004, Oracle. All rights reserved.

Integrating WebUtil into a Form

Object
Library

Object
group

Alert

Items

Canvas

Window

Step 2:
Subclass the

WEBUTIL object group.

Integrating WebUtil into a Form (continued)
Step 2: Subclassing WebUtil Forms Objects
Part of the WebUtil utility is a set of Forms objects contained in the webutil.olb. This
object library contains an object group called WebUtil that you can subclass into your
form. You must ensure that WebUtil is the last block in the Object Navigator.
If you subclass the WebUtil object group into an empty form, you can see that it contains
the following objects:

• A generic alert to display WebUtil error messages
• A data block with items, including a button and several bean area items to

implement the JavaBeans (the bean area items are hidden because they do not
provide a visual component on the form)

• A canvas to contain the items
• A window to display the canvas

Instructor Note
Demonstration: In the WU_TEST form, point out to students the above objects in the
Object Navigator. Leave the form open for additional demonstrations.

Oracle Forms Developer 10g: Build Internet Applications 24-13

24-13 Copyright © 2004, Oracle. All rights reserved.

When to Use WebUtil Functionality

Pre-Form
When-New-Form-Instance
When-New-Block-Instance
(first block)

Form starts
JavaBeans are instantiated

Any trigger after form starts
and while form is running

When to Use WebUtil Functionality
After the WebUtil library has been attached to your form, you can start to add calls to the
various PL/SQL APIs defined by the utility. However, there is an important restriction in
the use of WebUtil functions—WebUtil can communicate with the client only after the
Form has instantiated the WebUtil JavaBeans.
This means that you cannot call WebUtil functions before the user interface is rendered,
so you should not use WebUtil functionality in triggers such as Pre-Form, When-New-
Form-Instance, and When-New-Block-Instance for the first block in the form.
In the case of the When-New-Form-Instance trigger it is possible, however, to call
WebUtil functions after a call to the SYNCHRONIZE built-in has been issued, because
this ensures that the user interface is rendered.
Further, you cannot call WebUtil functions after the user interface has been destroyed. For
example, you should not use a WebUtil call in a Post-Form trigger.

Oracle Forms Developer 10g: Build Internet Applications 24-14

24-14 Copyright © 2004, Oracle. All rights reserved.

Interacting with the Client

Forms Built-Ins / Packages
HOST

GET_FILE_NAME

READ_IMAGE_FILE

WRITE_IMAGE_FILE

OLE2

TEXT_IO

TOOL_ENV

WebUtil Equivalents
CLIENT_HOST

CLIENT_GET_FILE_NAME

CLIENT_IMAGE.READ

(WRITE)_IMAGE_FILE

CLIENT_OLE2

CLIENT_TEXT_IO

CLIENT_TOOL_ENV

Interacting with the Client
As previously mentioned, Forms built-ins work on the application server. For the most
common Forms built-ins that you would want to use on the client, rather than on the
application server, you can add a prefix to use the WebUtil equivalent.
These client-server parity APIs make it easy to provide similar functionality in
applications that were written for client-server deployment by preceding those built-ins
with “CLIENT_” or “CLIENT_IMAGE.”. Although this makes it easy to upgrade such
applications, other WebUtil commands may provide similar, but better, functionality. The
client-server parity APIs include the following:
• CLIENT_HOST
• CLIENT_GET_FILE_NAME

You can use READ_IMAGE_FILE on the client by calling the WebUtil equivalent
contained in a package: CLIENT_IMAGE.READ_IMAGE_FILE.
In addition, there are certain Forms packages that you can use on the client with WebUtil:
• CLIENT_OLE2
• CLIENT_TEXT_IO
• CLIENT_TOOL_ENV

Oracle Forms Developer 10g: Build Internet Applications 24-15

24-15 Copyright © 2004, Oracle. All rights reserved.

Example: Opening a File Dialog
on the Client

DECLARE
v_file VARCHAR2(250):= CLIENT_GET_FILE_NAME('','',
'Gif Files|*.gif|JPEG Files|*.jpg|',
'Select a photo to upload',open_file,TRUE);

Example: Opening a File Dialog on the Client
To open a file dialog box on the client for selecting a file, you can use:
CLIENT_GET_FILE_NAME (DIRECTORY_NAME IN VARCHAR2,
FILE_NAME IN VARCHAR2, FILE_FILTER IN VARCHAR2,
MESSAGE IN VARCHAR2, DIALOG_TYPE IN NUMBER,
SELECT_FILE IN BOOLEAN) RETURN VARCHAR2;

The arguments for this WebUtil function are:
• DIRECTORY_NAME: Specifies the name of the directory containing the file you

want to open. If DIRECTORY_NAME is NULL, subsequent invocations of the dialog
box may open the last directory visited.

• FILE_NAME: Specifies the name of the file you want to open.
• FILE_FILTER: Specifies that only particular files be shown. On Windows, the

default is “All Files (*.*)|*.*|” if NULL.
• MESSAGE: Specifies the title of the file upload dialog box
• DIALOG_TYPE: Specifies the intended dialog box to OPEN_FILE or

SAVE_FILE.
• SELECT_FILE: Specifies whether the user is selecting files or directories. The

default value is TRUE; if set to FALSE, the user must select a directory. If
DIALOG_TYPE is set to SAVE_FILE, SELECT_FILE is internally set to TRUE.

Oracle Forms Developer 10g: Build Internet Applications 24-16

24-16 Copyright © 2004, Oracle. All rights reserved.

Example: Reading an Image File into
Forms from the Client

DECLARE
v_file VARCHAR2(250):= CLIENT_GET_FILE_NAME('','',

'Gif Files|*.gif|JPEG Files|*.jpg|',
'Select a photo to upload',open_file,TRUE);

it_image_id ITEM := FIND_ITEM
('employee_photos.photo');

BEGIN
CLIENT_IMAGE.READ_IMAGE_FILE(v_file,'',it_image_id);

END;

Example: Reading an Image File into Forms from the Client
You can use the CLIENT_IMAGE package to read or write image files. For example, the
CLIENT_IMAGE.READ_IMAGE_FILE procedure reads an image from the client file
system and displays it in the Forms image item:
CLIENT_IMAGE.READ_IMAGE_FILE (FILE_NAME VARCHAR2,
FILE_TYPE VARCHAR2, ITEM_ID ITEM or ITEM_NAME VARCHAR2);

The arguments for this WebUtil procedure are:
• FILE_NAME Valid file name: The file name designation can include a full path

statement appropriate to your operating system.
• FILE_TYPE The valid image file type: BMP, CALS, GIF, JFIF, JPG, PICT, RAS,

TIFF, or TPIC. (Note: File type is optional, because Oracle Forms will attempt to
deduce it from the source image file. To optimize performance, however, you should
specify the file type.)

• ITEM_ID: The unique ID Oracle Forms assigns to the image item when it creates it.
• ITEM_NAME: The name you gave the image item when you created it.

Oracle Forms Developer 10g: Build Internet Applications 24-17

24-17 Copyright © 2004, Oracle. All rights reserved.

Example: Writing Text Files
on the Client

DECLARE
v_dir VARCHAR2(250) := 'c:\temp';
ft_tempfile CLIENT_TEXT_IO.FILE_TYPE;

begin
ft_tempfile := CLIENT_TEXT_IO.FOPEN(v_dir ||

'\tempdir.bat','w');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'dir ' ||

v_dir || '> '|| v_dir || '\mydir.txt');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,

'notepad ' || v_dir || '\mydir.txt');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'del '||

v_dir || '\mydir.*');
CLIENT_TEXT_IO.FCLOSE(ft_tempfile);
CLIENT_HOST('cmd /c ' || v_dir || '\tempdir');

END;

1

2

4

3

Example: Writing Text Files on the Client
With CLIENT_TEXT_IO commands, you can create or read text files on the client
containing any ASCII text. This example creates a batch file on the client to display a
directory listing of the c:\temp directory. The code does the following:

1. Declares a variable to hold a handle to the file
2. Opens a file named tempdir.bat on the client for writing
3. Writes the following lines of text to the file:

dir c:\temp> c:\temp\mydir.txt
notepad c:\temp\mydir.txt
del c:\temp\mydir.*

4. Closes the file

Oracle Forms Developer 10g: Build Internet Applications 24-18

24-18 Copyright © 2004, Oracle. All rights reserved.

DECLARE
v_dir VARCHAR2(250) := 'c:\temp';
ft_tempfile CLIENT_TEXT_IO.FILE_TYPE;

begin
ft_tempfile := CLIENT_TEXT_IO.FOPEN(v_dir ||

'\tempdir.bat','w');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'dir ' ||

v_dir || '> '|| v_dir || '\mydir.txt');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,

'notepad ' || v_dir || '\mydir.txt');
CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'del '||

v_dir || '\mydir.*');
CLIENT_TEXT_IO.FCLOSE(ft_tempfile);
CLIENT_HOST('cmd /c ' || v_dir || '\tempdir');

END;

Example: Executing Operating System
Commands on the Client

Example: Executing OS Commands on the Client
You can execute simple HOST commands on the client using the CLIENT_HOST
command of WebUtil. The example shows running the batch file that was created in the
previous example with CLIENT_TEXT_IO; cmd /c opens a command window and
closes it after running the command. You must use cmd /c rather than running the
command directly or it will not work. You can run any command that you would be able
to execute from the Windows Start > Run menu.
Rather than creating the batch file with CLIENT_TEXT_IO, alternatively you can
execute the commands it contains as follows:

CLIENT_HOST('cmd /c dir c:\temp> c:\temp\mydir.txt');
CLIENT_HOST('cmd /c notepad c:\temp\mydir.txt');
CLIENT_HOST('cmd /c del c:\temp\mydir.*');

Note: You can obtain greater versatility in executing operating system commands by
using the WebUtil_Host package. This enables you to execute commands
synchronously or asynchronously and to call back into Forms from asynchronous
commands when execution is complete.

Oracle Forms Developer 10g: Build Internet Applications 24-19

24-19 Copyright © 2004, Oracle. All rights reserved.

Example: Performing OLE Automation
on the Client

CLIENT_OLE2.OBJ_TYPE
CLIENT_OLE2.LIST_TYPE
CLIENT_OLE2.CREATE_OBJ
CLIENT_OLE2.SET

_PROPERTY
CLIENT_OLE2.GET_OBJ

_PROPERTY
CLIENT_OLE2.INVOKE_OBJ

CLIENT_OLE2.CREATE
_ARGLIST

CLIENT_OLE2.ADD_ARG
CLIENT_OLE2.INVOKE
CLIENT_OLE2.DESTROY

_ARGLIST
CLIENT_OLE2.RELEASE_OBJ

You can use the following for OLE automation:

Example: Performing OLE Automation on the Client
You can use any OLE2 package on the client by preceding it with CLIENT_. You can see
the list of the OLE2 package procedures and functions in the Forms Builder Object
Navigator under the Built-in Packages node.
You can see examples of client OLE on OTN at
http://otn.oracle.com/products/forms/htdocs/webutil/webutil.htm. The following example
takes data from a form to construct a Word document and save it to the client machine:

DECLARE
app CLIENT_OLE2.OBJ_TYPE;
docs CLIENT_OLE2.OBJ_TYPE;
doc CLIENT_OLE2.OBJ_TYPE;
selection CLIENT_OLE2.OBJ_TYPE;
args CLIENT_OLE2.LIST_TYPE;

BEGIN
-- create a new document

app := CLIENT_OLE2.CREATE_OBJ('Word.Application');
CLIENT_OLE2.SET_PROPERTY(app,'Visible',1);

Oracle Forms Developer 10g: Build Internet Applications 24-20

Example: Performing OLE Automation on the Client (continued)
docs := CLIENT_OLE2.GET_OBJ_PROPERTY(app, 'Documents');
doc := CLIENT_OLE2.INVOKE_OBJ(docs, 'add');

selection := CLIENT_OLE2.GET_OBJ_PROPERTY(app,
'Selection');
-- Skip 10 lines

args := CLIENT_OLE2.CREATE_ARGLIST;
CLIENT_OLE2.ADD_ARG(args,6);
FOR i IN 1..10 LOOP

CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);
END LOOP;

-- insert data into new document

CLIENT_OLE2.SET_PROPERTY(selection,'Text',
'RE: Order# '|| :orders.order_id);
FOR i in 1..2 LOOP

CLIENT_OLE2.INVOKE(selection,'EndKey');
CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);

END LOOP;

CLIENT_OLE2.SET_PROPERTY(selection,'Text',
'Dear '|| :customer_name||':');
FOR i in 1..2 LOOP

CLIENT_OLE2.INVOKE(selection,'EndKey');
CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);

END LOOP;

CLIENT_OLE2.SET_PROPERTY(selection,'Text','Thank you for
your '|| 'order dated'||
to_char(:orders.order_date,'fmMonth DD, YYYY')||
', in the amount of '||
to_char(:control.total,'$99,999.99')||
'. We will process your order immediately and want you to '
|| 'know that we appreciate your business');

FOR i in 1..2 LOOP
CLIENT_OLE2.INVOKE(selection,'EndKey');
CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);

END LOOP;

Oracle Forms Developer 10g: Build Internet Applications 24-21

Example: Performing OLE Automation on the Client (continued)
CLIENT_OLE2.SET_PROPERTY(selection,'Text','Sincerely,');
FOR i in 1..5 LOOP

CLIENT_OLE2.INVOKE(selection,'EndKey');
CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);

END LOOP;

IF :orders.sales_rep_id IS NOT NULL THEN
CLIENT_OLE2.SET_PROPERTY(selection,'Text',

:orders.sales_rep_name || ', Sales Representative');
CLIENT_OLE2.INVOKE(selection,'EndKey');
CLIENT_OLE2.INVOKE(selection,'InsertBreak',args);

END IF;

CLIENT_OLE2.SET_PROPERTY(selection,'Text','Summit Office
Supply');

-- save document in temporary directory

CLIENT_OLE2.DESTROY_ARGLIST(args);
args := CLIENT_OLE2.CREATE_ARGLIST;
CLIENT_OLE2.ADD_ARG(args, 'letter_'||

:orders.order_id || '.doc');
CLIENT_OLE2.INVOKE(doc, 'SaveAs', args);
CLIENT_OLE2.DESTROY_ARGLIST(args);

-- close example.tmp
args := CLIENT_OLE2.CREATE_ARGLIST;
CLIENT_OLE2.ADD_ARG(args, 0);
CLIENT_OLE2.INVOKE(doc, 'Close', args);
CLIENT_OLE2.DESTROY_ARGLIST(args);

CLIENT_OLE2.RELEASE_OBJ(selection);
CLIENT_OLE2.RELEASE_OBJ(doc);
CLIENT_OLE2.RELEASE_OBJ(docs);

-- exit MSWord
CLIENT_OLE2.INVOKE(app,'Quit');
message('Letter created: letter_'||

:orders.order_id || '.doc');
END;

Instructor Note
This code is provided for student reference; there is no need to go over it in detail.

Oracle Forms Developer 10g: Build Internet Applications 24-22

24-22 Copyright © 2004, Oracle. All rights reserved.

Example: Obtaining Environment
Information about the Client

CLIENT_TOOL_ENV.GETVAR(:control.env_var,
:control.env_value);

Example: Obtaining Environment Information about the Client
You can use the CLIENT_TOOL_ENV.GETVAR procedure from WebUtil to obtain
information about registry variables on the client machine. You can obtain the values of
any registry variables in the key, HKEY_LOCAL_MACHINE > SOFTWARE >
ORACLE.
Note: You can obtain a greater variety of information about the client with the
WebUtil_ClientInfo package.

Instructor Note
Demonstration: Run the WU_TEST form from Forms Builder. To show students
additional functionality of WebUtil, demonstrate as many features as you have time for.
You can find detailed instructions for running this demo in WU_TEST.html in the demo
directory. Emphasize to students that they can download this demo from OTN to see
examples of coding the various functions of WebUtil.

Oracle Forms Developer 10g: Build Internet Applications 24-23

24-23 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• WebUtil is a free extensible utility that enables you

to interact with the client machine
• Although WebUtil uses Java classes, you code in

PL/SQL
• You integrate WebUtil into a form by attaching its

PL/SQL library and using an object group from its
object library; then you can use its functions after
the form has started and while it is running

• With WebUtil, you can do the following on the
client machine: open a file dialog box, read and
write image or text files, execute operating system
commands, perform OLE automation, and obtain
information about the client machine

Summary
WebUtil, included as part of Developer Suite 10g Patchset 1 and a free download from
OTN prior to that, consists of a set of Java classes and a PL/SQL API. You can extend
WebUtil by adding Java classes. The PL/SQL API enables you to do all coding within the
form in PL/SQL.
After the middle tier has been configured for WebUtil, in order to use it in a form you
need only add an object group from WebUtil’s object library and attach WebUtil’s
PL/SQL library. You shoud not use WebUtil functions in triggers that fire as the form is
starting up or after its user interface has been destroyed.
WebUtil includes much functionality. Some of the most common commands enable you
to:

• Open a file dialog box on the client (CLIENT_GET_FILE_NAME)
• Read or write an image file on the client (CLIENT_IMAGE package)
• Read or write a text file on the client (CLIENT_TEXT_IO)
• Execute operating system commands (CLIENT_HOST or WebUtil.HOST

package)
• Perform OLE automation on the client (CLIENT_OLE2)
• Obtain information about the client machine (CLIENT_TOOL_ENV)

Oracle Forms Developer 10g: Build Internet Applications 24-24

24-24 Copyright © 2004, Oracle. All rights reserved.

Practice 24 Overview

This practice covers the following topics:
• Integrating WebUtil with a form
• Using WebUtil functions to:

– Open a file dialog box on the client
– Read an image file from the client into the form
– Obtain the value of a client environment variable
– Create a file on the client
– Open the file on the client with Notepad
– Use OLE automation to create a form letter on the

client

Practice 24 Overview
In this practice, you integrate WebUtil with a form, and then use WebUtil to perform
various functions on the client machine.
Note: For solutions to this practice, see Practice 24 in Appendix A, “Practice Solutions.”

Instructor Note
The version of WebUtil (1.0.2) used in this course does not enable use of the debugger.
See bug 3497366, which is fixed in the production release of WebUtil.

Oracle Forms Developer 10g: Build Internet Applications 24-25

Practice 24
1. In the ORDGXX form, integrate the WebUtil objects and library.
2. Save the form.
3. Change the Exit button in the Control block. Rename it: New_Image_Btn. Relabel

it: New Image. Delete the current code for the button and write code to enable the
user to choose a new JPEG image to display in the Product_Image item.
Hint: You will need to use CLIENT_GET_FILENAME and
CLIENT_IMAGE.READ_IMAGE_FILE. You can import the code from
pr24_3.txt.

4. Set the Forms Builder run-time preferences to use a WebUtil configuration that has
been set up for you, ?config=webutil, and then run the form to test it. Try to
load one of the .jpg images in the lab directory.
Note: Because the image item is not a base table item, the new image is not saved
when you exit the form.

5. If you have time, experiment with some of the other client/server parity APIs by
adding additional code to the New_Image_Btn button. For example, you could:

a. Display a message on the status line that contains the value of the
ORACLE_HOME environment variable. You can import the code from
pr24_4a.txt.

b. Create a file called hello.txt in the c:\temp directory that contains the
text “Hello World” and invoke Notepad to display this file. You can import the
code from pr24_4b.txt.

Copyright © 2004, Oracle. All rights reserved.

Introducing Multiple Form Applications

Schedule: Timing Topic
50 minutes Lecture
30 minutes Practice
80 minutes Total

Oracle Forms Developer 10g: Build Internet Applications 25-2

25-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Call one form from another form module
• Define multiple form functionality
• Share data among open forms

Introduction
Overview
Oracle Forms Developer applications rarely consist of a single form document. This
lesson introduces you to the ways in which you can link two or more forms.

Oracle Forms Developer 10g: Build Internet Applications 25-3

25-3 Copyright © 2004, Oracle. All rights reserved.

Multiple Form Applications Overview

• Behavior:
– Flexible navigation between windows
– Single or multiple database connections
– Transactions may span forms, if required
– Commits in order of opening forms, starting with

current form
• Links:

– Data is exchanged by global variables, parameter
lists, global record groups, or PL/SQL variables in
shared libraries

– Code is shared as required, through libraries and
the database

Multiple Form Applications Overview
At the beginning of the course, we discussed the ability to design Forms applications
where blocks are distributed over more than one form, producing a modular structure. A
modular structure indicates the following:

• Component forms are only loaded in memory if they are needed.
• One form can be called from another, providing flexible combinations, as required.

How does the Application Behave?
The first form module to run is specified before the Forms session begins, using Forms
Runtime. Other form modules can be opened in the session by calling built-ins from
triggers.
You can design forms to appear in separate windows, so the user can work with several
forms concurrently in a session (when forms are invoked by the OPEN_FORM built-in).
Users can then navigate between visible blocks of different forms, much as they can in a
single form.
You can design forms for a Forms Runtime session according to the following conditions:

• Forms share the same database session, or open their own separate sessions.

Oracle Forms Developer 10g: Build Internet Applications 25-4

25-4 Copyright © 2004, Oracle. All rights reserved.

Multiple Form Session

Form A

Forms
Runtime

Global variables
Global record groups

PL/SQL variables

Form B
Open

Form C

Open

Form D

Open

(Parameters)

(Parameters)

(Parameters)

Multiple Form Applications Overview (continued)
• Database transactions are continued across forms, or ended before control is passed

to another form. The commit sequence starts from the current form and follows the
opening order of forms.

• Forms Builder provides the same menus across the application, or each form
provides its own separate menus when it becomes the active form.

What Links the Forms Together?
Each form runs within the same Forms Runtime session, and Forms remembers the form
that invoked each additional form. This chain of control is used when you exit a form or
commit transactions.
Data can be exchanged between forms as follows:

• Through global variables, which span sessions
• Through parameter lists, for passing values between specific forms
• Through global record groups
• Through PL/SQL variables in shared libraries

Code can be shared through the following:
• Library modules, by attaching them to each form as required
• Stored program units in the database

Oracle Forms Developer 10g: Build Internet Applications 25-5

25-5 Copyright © 2004, Oracle. All rights reserved.

Benefits of Multiple Form Applications

Breaking your application into multiple forms offers
the following advantages:
• Easier debugging
• Modularity
• Performance and scalability

Module broken
into subsets based
on user navigation

Path 1
(Module 1)

Path 2
(Module 2)

Multiple Form Applications Overview (continued)
Benefits of Multiple Form Applications
Since you can use different windows and canvases in a form module, wouldn’t it be easier
to put the entire application into one large form? Separating your application into multiple
forms offers the following benefits:

• Debugging: It is easier to debug a small form; once a single form is working
perfectly, you have only to integrate it into your application.

• Logic modularity:You break the application into pieces based on the logical
functions the module is designed to perform. For example, you would not want the
functions of human resources management and accounts receivable combined in a
single form, and within each of these major functions are other logical divisions.

• Network performance and scalability: Sufficient information must be downloaded
to describe the entire form before the form appears on the user’s screen. Large forms
take longer to download the relevant information, and fewer users can be supported
on the given hardware. Break large applications into smaller components based on
the likelihood of user navigation, enabling logical areas to be loaded on demand
rather than all at once. This approach enables the module to start faster and uses less
memory on the application server.

Oracle Forms Developer 10g: Build Internet Applications 25-6

25-6 Copyright © 2004, Oracle. All rights reserved.

Starting Another Form Module

MDI

FORM A

MDI

FORM A

Modeless

FORM B
OPEN_FORM

OPEN_FORM

How to Start Another Form Module
When the first form in a Forms Runtime session has started, it can provide the user with
facilities for starting additional forms. This can be performed by one of two methods:

• Calling a built-in procedure from a trigger in the form
• Calling a built-in procedure from a menu item in an attached menu

Built-In Procedures for Starting Another Form
You can use the OPEN_FORM built-in to start another form module from one that is
already active. This is a restricted procedure, and cannot be called in the Enter Query
mode. OPEN_FORM enables you to start another form in a modeless window, so the user
can work in other running forms at the same time.
You can start another form using OPEN_FORM without passing control to it immediately,
if required. This built-in also gives you the option to begin a separate database session for
the new form.

Instructor Note
The broken line indicates that control need not pass immediately to the opened form
(depending on the Activate_Mode argument).

Oracle Forms Developer 10g: Build Internet Applications 25-7

How to Start Another Form Module (continued)
Syntax:

OPEN_FORM(’form_name’, activate_mode, session_mode,
data_mode, paramlist);

There are two other built-ins that can call another form. This course concentrates on
OPEN_FORM, which is considered the primary method to invoke multiple forms, rather
than the CALL_FORM or NEW_FORM built-ins. For a discussion of these additional built-
ins, see the OU Online Library course Oracle9i Forms Developer: Enhance Usability.
You can access the online library from the Oracle Education Web page at:
http://www.oracle.com/education

Parameter Description
Form_Name Filename of the executable module (without the .FMX suffix)
Activate_Mode Either ACTIVATE (the default), or NO_ACTIVATE
Session_Mode Either NO_SESSION (the default), or SESSION
Data_Mode Either NO_SHARE_LIBRARY_DATA (the default) or

SHARE_LIBRARY_DATA (Use this parameter to enable Forms
to share data among forms that have identical libraries attached.)

Paramlist Either the name (in quotes) or internal ID of a parameter list

Oracle Forms Developer 10g: Build Internet Applications 25-8

25-8 Copyright © 2004, Oracle. All rights reserved.

Defining Multiple Form Functionality

Summit application scenario:
• Run the CUSTOMERS and ORDERS forms in the

same session, navigating freely between them.
• You can

make
changes in
the same
transaction
across forms.

• All forms are
visible
together.

Defining Multiple Form Functionality
Using OPEN_FORM to Provide Forms in Multiple Windows
You can use OPEN_FORM to link form modules in an application and enable the user to
work in them concurrently. Consider these requirements for the Summit application:

• The CUSTOMERS form must provide an option to start the ORDERS form in the
same transaction, and orders for the current customer can be viewed, inserted,
updated, and deleted.

• The user can see all open forms at the same time, and freely navigate between them
to apply changes.

• Changes in all forms can be saved together.
Using OPEN_FORM to open both forms in the same session satisfies the requirements.
However, having both forms open in the same session may have an undesired effect: If
changes are made in the opened form, but not in the calling form, when saving the
changes users may receive an error message indicating that no changes have been made.
This error is produced by the calling form; changes in the opened form are saved
successfully, but the error message may be confusing to users. To avoid this, you may
decide to open the second form in a separate session, but then changes to each form would
need to be saved separately.

Oracle Forms Developer 10g: Build Internet Applications 25-9

25-9 Copyright © 2004, Oracle. All rights reserved.

Defining Multiple Form Functionality

Actions:
1. Define windows and positions for each form.
2. Plan shared data, such as global variables and

their names.
3. Implement triggers to:

– Open other forms
– Initialize shared data from calling forms
– Use shared data in opened forms

Defining Multiple Form Functionality (continued)
To provide this kind of functionality, perform the following steps:

1. Create each of the form modules. Plan where the windows of each module will
appear in relation to those of other modules.

2. Plan how to share data among forms, such as identifying names for global variables.
You need one for each item of data that is to be accessible across all the forms in the
application. Note that each form must reference a global variable by the same name.
Note: You can also share data among forms using parameter lists, global record
groups, or PL/SQL variables in shared libraries.

3. Plan and implement triggers to:
Open another form (You can do this from item interaction triggers, such as
When-Button-Pressed, or from When-New-“object”-Instance triggers, or from
a Key- trigger that fires on a keystroke or equivalent menu selection.)
Initialize shared data in calling forms so that values such as unique keys are
accessible to other forms when they open. This might need to be done in more
than one trigger, if the reference value changes in the calling form.
Make use of shared data in opened forms. For example, a Pre-Query trigger
can use the contents of the global variable as query criteria.

Oracle Forms Developer 10g: Build Internet Applications 25-10

25-10 Copyright © 2004, Oracle. All rights reserved.

Conditional Opening

Example

IF ID_NULL(FIND_FORM(’ORDERS’)) THEN

OPEN_FORM(’ORDERS’);

ELSE

GO_FORM(’ORDERS’);

END IF;

Conditional Opening
You can start up several instances of the same form, using OPEN_FORM, unless the
application does appropriate tests before calling this built-in. For example, test a flag
(global variable) set by an opened form at startup, which the opened form could reset on
exit. This method may be unreliable, however, because if the form exits with an error the
flag may not be properly reset. A better practice is to use the FIND_FORM built-in.
Here is a variation of the When-Button-Pressed trigger on Orders_Button in the
CUSTOMERS form. If the ORDERS form is already running, it simply passes control to
it, using GO_FORM.

....
IF ID_NULL(FIND_FORM(’ORDERS’)) THEN

OPEN_FORM(’ORDERS’);
ELSE

GO_FORM(’ORDERS’);
END IF;

Note: If the name of the form module and its file name are different:
• Use the file name for OPEN_FORM: OPEN_FORM(‘orderswk23’);
• Use the form module name for GO_FORM: GO_FORM(‘orders’);

Oracle Forms Developer 10g: Build Internet Applications 25-11

25-11 Copyright © 2004, Oracle. All rights reserved.

Closing the Session

“Will the last one out please turn off the lights?”

Form A

Form B

Run-time
session

Form C

Closing Forms and Forms Run-Time Sessions
A form may close down and pass control back to its calling form under the following
conditions:

• The user presses Exit or selects Exit from the Action menu.
• The EXIT_FORM built-in is executed from a trigger.

If the closing form is the only form still running in the Forms run-time session, the session
will end as a result. When a multiple form session involves the OPEN_FORM built-in, it is
possible that the last form to close is not the one that began the session.

Oracle Forms Developer 10g: Build Internet Applications 25-12

25-12 Copyright © 2004, Oracle. All rights reserved.

Closing a Form with EXIT_FORM

• The default functionality is the same as for the
Exit key.

• The Commit_Mode argument defines action on
uncommitted changes.

ENTER;

IF :SYSTEM.FORM_STATUS = ’CHANGED’ THEN

EXIT_FORM(DO_COMMIT);

ELSE

EXIT_FORM(NO_COMMIT);

END IF;

Closing a Form with EXIT_FORM
When a form is closed, Forms checks to see whether there are any uncommitted changes.
If there are, the user is prompted with the standard alert:

Do you want to save the changes you have made?

If you are closing a form with EXIT_FORM, the default functionality is the same as
described above. You can, however, make the decision to commit (save) or roll back
through the EXIT_FORM built-in, so the user is not asked. Typically, you might use this
built-in from a Key-Exit or When-Button-Pressed trigger.

EXIT_FORM(commit_mode);

Parameter Description
Commit_Mode Defines what to do with uncommitted changes to the current form:

• ASK_COMMIT (the default) gives the decision to the user.
• DO_COMMIT posts and commits changes across all forms for the

current transaction.
• NO_COMMIT validates and rolls back uncommitted changes in the

current form.
• NO_VALIDATE is the same as NO_COMMIT, but without validation.

Oracle Forms Developer 10g: Build Internet Applications 25-13

25-13 Copyright © 2004, Oracle. All rights reserved.

Other Useful Triggers

Maintain referential links and synchronize data
between forms:
• In the parent form:

– When-Validate-Item
– When-New-Record-Instance

• In opened forms: When-Create-Record
• In any form: When-Form-Navigate

Other Useful Triggers When Using OPEN_FORM
One drawback of designing applications with multiple forms is that you do not have the
functionality available within a single form to automatically synchronize data such as
master and detail records. You must provide your own coding to ensure that related forms
remain synchronized.
Because OPEN_FORM enables the user to navigate among open forms, potentially
changing and inserting records, you can use the triggers shown in the slide to help keep
referential key values in step across forms.
Example
In the parent form (CUSTOMERS), this assignment to GLOBAL.CUSTOMERID can be
performed in a When-Validate-Item trigger on :CUSTOMERS.Customer_Id, so
that the global variable is kept up-to-date with an applied change by the user. The
statement can also be issued from a When-New-Record-Instance trigger on the
CUSTOMERS block, in case the user navigates to a line item record for a different
customer.

:GLOBAL.customerid := :CUSTOMERS.customer_id;

Oracle Forms Developer 10g: Build Internet Applications 25-14

Other Useful Triggers When Using OPEN_FORM (continued)
Example
In the opened form (ORDERS), a When-Create-Record trigger on the ORDERS block
ensures that new records use the value of GLOBAL.CUSTOMERID as their default.
When items are assigned from this trigger, the record status remains NEW, so that the
user can leave the record without completing it.

:ORDERS.customer_id := :GLOBAL.customerid;

Example
You may have a query-only form that displays employee IDs and names, with a button to
open another form that has all the columns from the EMPLOYEE table so that users can
insert new records.
You can use a When-Form-Navigate trigger in the query-only form to reexecute the
query, so that when the user navigates back to that form the newly created records are
included in the display.

Oracle Forms Developer 10g: Build Internet Applications 25-15

25-15 Copyright © 2004, Oracle. All rights reserved.

Sharing Data Among Modules

You can pass data between modules using:
• Global variables
• Parameter lists
• Global record groups
• PL/SQL package variables in shared libraries

Sharing Data among Modules
Data can be exchanged between forms as follows:

• Through global variables, which span sessions
• Through parameter lists, for passing values between specific forms
• Through record groups created in one form with global scope
• Through PL/SQL variables in shared libraries

Oracle Forms Developer 10g: Build Internet Applications 25-16

25-16 Copyright © 2004, Oracle. All rights reserved.

Linking by Global Variables

ORDERS

Customer_ID
Order

CUSTOMERS

Customer

ID

GLOBAL.CUSTOMERID

Defining Multiple Form Functionality
Planning Global Variables and Their Names
You need a global variable for each item of data that is used across the application.
Reminders:

• Global variables contain character data values, with a maximum of 255 characters.
• Each global variable is known by the same name to each form in the session.
• Global variables can be created by a PL/SQL assignment, or by the

DEFAULT_VALUE built-in, which has no effect if the variable already exists.
• Attempting to read from a nonexistent global variable causes an error.

The scenario in the slide shows one global variable: GLOBAL.CUSTOMERID ensures that
orders queried at the startup of the ORDERS form apply to the current customer.

Oracle Forms Developer 10g: Build Internet Applications 25-17

25-17 Copyright © 2004, Oracle. All rights reserved.

Global Variables: Opening Another Form

Example

Notes
• Control passes immediately to the ORDERS form—

no statements after OPEN_FORM are processed.
• If the Activate_Mode argument is set to

NO_ACTIVATE, you retain control in the current
form.

• The transaction continues unless it was explicitly
committed before.

:GLOBAL.customerid := :CUSTOMERS.customer_id;

OPEN_FORM(’ORDERS’);

Opening Another Form
• When you default the Activate_Mode argument in OPEN_FORM, control is

passed immediately to the specified form, and any remaining statements after
OPEN_FORM are not executed.

• If you set Activate_Mode to NO_ACTIVATE, control remains in the calling
form, although the specified form starts up and the rest of the trigger is processed.
Users can then navigate to the other form when they choose.

• If you want to end the current transaction before opening the next form, call the
COMMIT_FORM built-in before OPEN_FORM. You can check to see if the value of
:SYSTEM.FORM_STATUS='CHANGED' to decide whether a commit is needed.
Alternatively, you can just post changes to the database with POST, then open the
next form in the same transaction.

Opening the ORDERS Form from the CUSTOMERS Form
This When-Button-Pressed trigger on :CONTROL.Orders_Button opens the
ORDERS form, and passes control immediately to it. ORDERS will use the same
database session and transaction.

:GLOBAL.customerid := :CUSTOMERS.customer_id;
OPEN_FORM(’ORDERS’);

Oracle Forms Developer 10g: Build Internet Applications 25-18

25-18 Copyright © 2004, Oracle. All rights reserved.

Global Variables: Restricted Query
at Startup

Execute_Query;

:ORDERS.customer_id := :GLOBAL.customerid;

When-New-Form-Instance

Pre-Query

Performing a Restricted Query on Startup
To display a query automatically in the opened form, with data in context to the calling
form, you produce two triggers:
• When-New-Form-Instance: This form-level trigger fires when the form is

opened (regardless of whether control is passed to this form immediately or not).
You can use this trigger to initiate a query by using the EXECUTE_QUERY built-in
procedure. Executing a query fires a Pre-Query trigger if one is defined. The
ORDERS form contains the following When-New-Form-Instance trigger:

EXECUTE_QUERY;
• Pre-Query: This is usually on the master block of the opened form. Because this

trigger fires in Enter Query mode, it can populate items with values from global
variables, which are then used as query criteria. This restriction applies for every
other query performed on the block thereafter.
This Pre-Query trigger is on the ORDERS block of the ORDERS form:

:ORDERS.customer_id := :GLOBAL.customerid;

Oracle Forms Developer 10g: Build Internet Applications 25-19

25-19 Copyright © 2004, Oracle. All rights reserved.

Assigning Global Variables
in the Opened Form

• DEFAULT_VALUE ensures the existence of globals.
• You can use globals to communicate that the form

is running.

DEFAULT_VALUE(’’, ’GLOBAL.customerid’);

Pre-Form example:

Assigning Global Variables in the Opened Form
If, for some reason, a global variable has not been initialized before it is referenced in a
called form, an error is reported:

FRM-40815: Variable GLOBAL.customerid does not exist.

You can provide independence, and ensure that global variables exist by using the
DEFAULT_VALUE built-in when the form is opening.
Example
This Pre-Form trigger in the ORDERS form assigns a NULL value to
GLOBAL.CUSTOMERID if it does not exist when the form starts. Because the
Pre-Form trigger fires before record creation, and before all of the
When-New-“object”-Instance triggers, it ensures existence of global variables at the
earliest point.

DEFAULT_VALUE(’’, ’GLOBAL.customerid’);

The ORDERS form can now potentially be called without the CUSTOMERS form.

Oracle Forms Developer 10g: Build Internet Applications 25-20

25-20 Copyright © 2004, Oracle. All rights reserved.

http://myhost:8889/forms90/f90servlet
?form=emp.fmx&otherparams=deptno=140

Linking by Parameter Lists

Parameters:
• Are form module objects
• Properties:

– Name
– Parameter Data Type
– Maximum Length
– Parameter Initial Value

• Can optionally receive a new value:

EMP_FORM

Creating and Passing Parameter Lists
You can create any number of parameters in a form to hold data. Unlike global variables,
parameters can be of any data type. However, their use in multi-form applications is
limited by the fact that they are visible only to the form in which they are defined.
When you run a form, you can pass a value to the parameter as a name-value pair, such as
&otherparams=deptno=140. Once the form receives the parameter value, a trigger
can use that value to perform such functionality as restricting a query to records
containing that value.
In the preceding example, you could construct a Pre-Query trigger to assign the value
of :parameter.deptno to the :employees.department_id form item. When a query
is executed on the Employees block, only the employees from department 140 would be
retrieved.
You can also pass parameters to called forms programmatically by means of a parameter
list.

Oracle Forms Developer 10g: Build Internet Applications 25-21

25-21 Copyright © 2004, Oracle. All rights reserved.

Example:
DECLARE

pl_id ParamList;
pl_name VARCHAR2(10) := 'tempdata';

BEGIN
pl_id := GET_PARAMETER_LIST(pl_name);
IF ID_NULL(pl_id) THEN
pl_id := CREATE_PARAMETER_LIST(pl_name);
ELSE
DELETE_PARAMETER(pl_id,'deptno');
END IF;
ADD_PARAMETER(pl_id,'deptno',TEXT_PARAMETER,

to_char(:departments.department_id));
OPEN_FORM('called_param',ACTIVATE,NO_SESSION,pl_id);

END;

Linking by Parameter Lists

1

2

3

Creating and Passing Parameter Lists (continued)
A parameter list is a named programmatic construct that is simply a list of parameter
names and character values. The built-in OPEN_FORM optionally takes as an argument
the name or ID of a parameter list. To receive this information, the called form must
contain a parameter with the same name as each of those in the parameter list. In the
called form, you can use the parameter by preceding its name with :parameter, for
example :parameter.customer_name.
To use a parameter list, in the calling form:

1. Create the parameter list (after checking that it does not already exist).
2. Add a parameter as a name/value pair text parameter. (There is another type of

parameter, but it is not used to pass data between forms.)
3. Open the called form and pass the parameter list.

There are several built-ins that enable you to work with parameter lists, including:
GET_PARAMETER_LIST
CREATE_PARAMETER_LIST
DESTROY_PARAMETER_LIST
ADD_PARAMETER
DELETE_PARAMETER

Oracle Forms Developer 10g: Build Internet Applications 25-22

25-22 Copyright © 2004, Oracle. All rights reserved.

Linking by Parameter Lists

Example:
Called form

Create parameter
in the form

IF :parameter.deptno IS NOT NULL THEN
SET_BLOCK_PROPERTY('employees',

DEFAULT_WHERE,'department_id =
'||:parameter.deptno);

SET_WINDOW_PROPERTY('window1',
TITLE,'Employees in Department ‘
||:parameter.deptno);

END IF;
GO_BLOCK('employees');
EXECUTE_QUERY;

Use parameter name
preceded by :parameter

When-New-Form-Instance Trigger

Creating and Passing Parameter Lists (continued)
To use a parameter in the called form, you must first create the parameter in the form.
Select the Parameters node in the Object Navigator and click Create, then change the
name of the parameter to be the name that you are passing in the parameter list from the
calling form. Once you have defined the parameter, you can use it in any of the called
form’s code by preceding the parameter name with :parameter. You can use the form
independently of the calling form if you check to see if the parameter is null before using
it or if you set the Parameter Initial Value property of the parameter.

Instructor Note
Demonstration: The example above is contained in the forms CALLING_PARAM.fmb
and CALLED_PARAM.fmb . Open these forms to show students the code contained in
the When-Button-Pressed trigger of the calling form and the When-New-Form-Instance
trigger of the called form. Compile both forms. Run CALLED_PARAM in a browser and
pass the parameter to it in a URL (?form=called_param.fmx&otherparams
=deptno=140) to show that the code restricts the query based on the parameter that is
passed. Then run the calling form and press the button to show that you can pass the
parameter in a parameter list.

Oracle Forms Developer 10g: Build Internet Applications 25-23

25-23 Copyright © 2004, Oracle. All rights reserved.

Linking by Global Record Groups

1. Create record group with global scope:
DECLARE
rg_name VARCHAR2(40) := 'LIST';
rg_id RecordGroup;
Error_Flag NUMBER;

BEGIN
rg_id := FIND_GROUP(rg_name);
IF ID_NULL(rg_id) THEN
rg_id := CREATE_GROUP_FROM_QUERY('LIST',
'Select last_name, to_char(employee_id)
from employees',GLOBAL_SCOPE);

END IF;
2. Populate record group:

Error_Flag := POPULATE_GROUP(rg_id);

3. Use record group in any form.

Sharing Global Record Groups among Forms
The CREATE_GROUP_FROM_QUERY built-in has as scope argument that defaults to
FORM_SCOPE. However, if you use GLOBAL_SCOPE, the record group is global, and
can be used within all forms in the application. Once created, a global record group
persists for the remainder of the run time session. See Lesson 8 for a description of using a
record group as a basis for a list of values (LOV). There are many other ways to use
record groups that are not covered in this course.
To use a global record group:

1. Use CREATE_GROUP_FROM_QUERY to create the record group with
GLOBAL_SCOPE.

2. Populate the record group with the POPULATE_GROUP built-in.
3. The record group is now available to any form in the same session.

Instructor Note
Demonstration: Open the CALLING_RG.fmb and CALLED_RG.fmb files. Show
students the code in their When-New-Form-Instance triggers. Compile
CALLED_RG.fmb (ignore the FRM-30351 error – this is just a warning because there are
no list elements because the list is to be populated at run time). Run CALLING_RG.fmb.

Oracle Forms Developer 10g: Build Internet Applications 25-24

25-24 Copyright © 2004, Oracle. All rights reserved.

Linking by Shared PL/SQL Variables

Advantages:
• Use less memory than global variables
• Can be of any data type

To use:
1. Create a PL/SQL library.
2. Create a package specification with variables.
3. Attach the library to multiple forms.
4. Set variable values in calling form.
5. OPEN_FORM with SHARE_LIBRARY_DATA option.
6. Use variables in opened form.

Linking by Package Variables in Shared PL/SQL Library
Perhaps the simplest and most efficient way to share data among forms is by using
packaged variables in PL/SQL libraries. This enables you to use any data type, even user-
defined types, to pass information between forms.
You create a library with at least a Package Specification that contains one or more
variable declarations. You then attach that library to the calling and called forms.
When you open the called form with the SHARE_LIBRARY_DATA option, the variable
value can be set and used by both open forms, making it very easy to share information
among multiple forms.

Instructor Note
Demonstration: The example on the next page is contained in the forms
CALLING_LIB.fmb and CALLED_LIB.fmb . Open these forms to show students the
code contained in the When-Button-Pressed trigger of the calling form and the When-
New-Form-Instance trigger of the called form. Compile the called form, then run the
calling form and press the button to demonstrate that the code restricts the query of the
called form based on the parameter that is passed.

Oracle Forms Developer 10g: Build Internet Applications 25-25

25-25 Copyright © 2004, Oracle. All rights reserved.

Linking by Shared PL/SQL Variables

OPEN_FORM(‘called_lib’,ACTIVATE,
NO_SESSION,SHARE_LIBRARY_DATA);

Linking by Package Variables in Shared PL/SQL Library (continued)
For example, with the package shown above in a library that is attached to two forms, in a
When-Button-Pressed trigger of the calling form:
my_data.department := :departments.department_id;
OPEN_FORM('called_lib',ACTIVATE,NO_SESSION,SHARE_LIBRARY_DATA);

And in the When-New-Form-Instance trigger of the called form:
IF my_data.department IS NOT NULL THEN

SET_BLOCK_PROPERTY('employees',DEFAULT_WHERE,
'department_id='||TO_CHAR(my_data.department));

END IF;
GO_BLOCK('employees');
EXECUTE_QUERY;

Oracle Forms Developer 10g: Build Internet Applications 25-26

25-26 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• OPEN_FORM is the primary method to call one form

from another form module
• You define multiple form functionality such as:

– Whether all forms run in the same session
– Where the windows appear
– Whether multiple forms should be open at once
– Whether users should be able to navigate among

open forms
– How data will be shared among forms

Summary
This lesson is an introduction lesson to multiple form applications. You should have
learned how to:

• Open more than one form module in a Forms Runtime session
• Define how multiple forms in an application will function
• Pass information among forms

Oracle Forms Developer 10g: Build Internet Applications 25-27

25-27 Copyright © 2004, Oracle. All rights reserved.

Summary

• You can share data among open forms with:
– Global variables, which span sessions
– Parameter lists, for passing values between specific

forms
– Record groups created in one form with global

scope
– PL/SQL variables in shared libraries

Oracle Forms Developer 10g: Build Internet Applications 25-28

25-28 Copyright © 2004, Oracle. All rights reserved.

Practice 25 Overview

This practice covers the following topics:
• Using a global variable to link ORDERS and

CUSTOMERS forms
• Using built-ins to check whether the ORDERS form

is running
• Using global variables to restrict a query in the

ORDERS form

Practice 25 Overview
In this practice, you produce a multiple form application by linking the CUSTGXX and
the ORDGXX form modules.

• Linking ORDERS and CUSTOMERS forms by using a global variable
• Using built-ins to check whether the ORDERS form is running
• Using global variables to restrict a query in the ORDERS form

Note: For solutions to this practice, see Practice 25 in Appendix A, “Practice Solutions.”

Oracle Forms Developer 10g: Build Internet Applications 25-29

Practice 25
1. In the ORDGXX form, create a Pre-Form trigger to ensure that a global variable

called Customer_Id exists.
2. Add a trigger to ensure that queries on the ORDERS block are restricted by the value

of GLOBAL.Customer_Id.
3. Save, compile, and run the form to test that it works as a stand-alone.
4. In the CUSTGXX form, create a CONTROL block button called Orders_Button and

set appropriate properties. Place in on the CV_CUSTOMER canvas below the
Customer_Id item.

5. Define a trigger for CONTROL.Orders_Button that initializes
GLOBAL.Customer_Id with the current customer’s ID, and then opens the
ORDGXX form, passing control to it.

6. Save and compile each form. Run the CUSTGXX form and test the button to open
the Orders form.

7. Change the window location of the ORDGXX form, if required.
8. Alter the Orders_Button trigger in CUSTGXX so that it does not open more than one

instance of the Orders form, but uses GO_FORM to pass control to ORDGXX if the
form is already running. Use the FIND_FORM built-in for this purpose.

9. If you navigate to a second customer record and click the Orders button, the Orders
form still displays the records for the previous customer. Write a trigger to reexecute
the query in the ORDERS form in this situation.

10. Write a When-Create-Record trigger on the ORDERS block that uses the value of
GLOBAL.Customer_Id as the default value for ORDERS.Customer_Id.

11. Add code to the CUSTGXX form so that GLOBAL.Customer_Id is updated when
the current Customer_Id changes.

12. Save and compile the ORDGXX form. Save, compile, and run the CUSTGXX form
to test the functionality.

13. If you have time, you can modify the appearance of the ORDXX form to make it
easier to read, simlar to what you see in ORDERS.fmb.

	CIG2.pdf
	Toc.pdf
	preface.pdf
	Intro.pdf
	Les13.pdf
	Les14.pdf
	Les15.pdf
	Les16.pdf
	Les17.pdf
	Les18.pdf
	Les19.pdf
	Les20.pdf
	Les21.pdf
	Les22.pdf
	Les23.pdf
	Les24.pdf
	Les25.pdf

