2011

STEEL STRUCTURAL PROJECT (ROOF TRUSS)

تحت اشثرف|
د/ د/ نيبل فلهع
د/ سـليمانـ الصـافٌ

سمير محمد محمد الصياد 2008/141 سليمان علي صالح مجيديع 2008/407 عبدالرحمن يحيى الحبابي 2008/82 عمار غانم سليمان مسعود 2008/173 عادل علي حسن هرمس 2008/221

The project

A garage consist of $(\mathrm{n}=10)$ trusses, (type as has been selected for each group of students), each spaced (s) m. The roof trusses are supported by concrete columns 10 x a m apart. Estimate the dead load on the truss and use snow load of $1.2 \mathrm{kN} / \mathrm{m}^{2}$ of horizontal projection and wind load of $0.5 \mathrm{kN} / \mathrm{m}^{2}$ on leeward side and $0.25 \mathrm{kN} / \mathrm{m}^{2}$ on the windward side and roofing of 1.0 $\mathrm{kN} / \mathrm{m}^{2}$.

Design Data

1. A36 steel.
2. Type of connections: welded for left hand bolted connections for right hand side half. (assume all connection are bolted for member design)

Requirement

1. Draw to scale 1:100 general arrangements showing all structural elements.
2. Calculate different load acting on an intermediate truss.
3. Determine the design force in each member (table format).
4. Design each section (Find suitable section for chord and web members).
5. Design half of the joints as welded connections and the other as bolted connections.
6. Study the system of bracing for the building.

For our project:

$s=4 m, a=2.8 m$

Fig. (1)

Fig. (2)

Fig. (3)

Fig.(4)

From figure 1 to figure 4 are show the general arrangement of the building.

Calculation of loads acting on an internal truss

Live load

From the ASCE 7-05 table (4-1) we take $\mathrm{LL}=1 \mathrm{kN} \backslash \mathrm{m}^{2}$ which is on the horizontal projection.
Then $L L=1 \cos \theta=0.995 \mathrm{kN} \backslash \mathrm{m}^{2}$ (on the inclined length and $\Theta=5.710593137^{\circ}$)
Load on internal nod in a typical internal truss equal $0.995 * 4 * 2.8=11.144 \mathrm{kN} \backslash \mathrm{m}^{2}$

Snow load

As it given in our project $1.2 \mathrm{kN} \backslash \mathrm{m}^{2}$ on the horizontal projection
Then $S L=1.2 \cos \Theta=1.194 \mathrm{kN} \backslash \mathrm{m}^{2}$ (on the inclined length and $\theta=5.710593137^{\circ}$)
Load on internal nod in a typical internal truss equal $1.194 * 4 * 2.8=13.373 \mathrm{kN} \backslash \mathrm{m}^{2}$

Estimating Dead load

The weight of the roof truss and its bracing is taken approximately 10% of the loading it is required to support.

We will take it due the live and snow loads as shown in the table

Note

The unit load analysis will use for calculate the live, snow and dead loads internal forces.

Analysis of the truss using Joints method due to unit load

Fig. (5) Names of Joints and truss geometry
(ROOF TRUSS) Structural Steel Project

$\mathrm{U}_{0} \mathrm{~L}_{0}=0.5$

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \mathrm{~L}_{1} \mathrm{~L}_{2}=7.5 \\
& \sum F_{y}=0 \\
& \mathrm{~L}_{1} \mathrm{U}_{1}=0
\end{aligned}
$$

(ROOF TRUSS) Structural Steel Project

$\sum F_{y}=0 \Rightarrow 1+\mathrm{L}_{2} \mathrm{U}_{3} \sin \alpha_{2}=4.581 \sin \alpha_{1}$
$\mathrm{L}_{2} \mathrm{U}_{3}=2.17248858$
$\sum F_{x}=0 \Rightarrow 7.5+4.581 \cos \alpha_{1}+L_{2} \mathrm{U}_{3} \mathrm{~s} \cos \alpha_{2}=\mathrm{L}_{2} \mathrm{~L}_{3}$
$L_{2} L_{3}=13.125$

(ROOF TRUSS) Structural Steel Project

$\sum F_{x}=0$
$\mathrm{U}_{3} \mathrm{U}_{4} \cos \Theta+\mathrm{U}_{3} \mathrm{~L}_{4} \cos \alpha_{2}=11.4855 \cos \Theta+2.1724 \cos \alpha_{2}$

$13.125+1.266 \cos \alpha_{2}+L_{4} U_{5} \cos \alpha_{3}=L_{4} L_{5}$

$$
L_{4} L_{5}=12.5
$$

Fig. (6) Internal forces.

Fig. (7) Beams labels.

Calculation of Wind Load

For the static approach, the fluctuating pressure caused by a constantly blowing wind is approximated by a mean velocity pressure that acts on the structure. This pressure q is defined by its kinetic energy, $q=P / \mathrm{V} 2$,
Where $=\mathrm{p}$ is the density of the air and V is its velocity. According to the ASCE 7-05 Standard, this equation is modified to account for the importance of the structure, its height, and the terrain in which it is located. It is represented as

$$
\mathrm{q}_{\mathrm{z}}=0.613 \mathrm{~K}_{\mathrm{z}} \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{d}} \mathrm{~V}^{2} \mathrm{I}\left(\mathrm{~N} \backslash \mathrm{~m}^{2}\right.
$$

(ASCE 7-05 eq. 6-15)
Where,
$\mathrm{V}=$ the velocity in m / s of a 3 -second gust of wind measured 10 m above the ground during a $50-$ year recurrence period. Values are obtained from H. Althaferee wind map of Yemen.
$I=$ the importance factor that depends upon the nature of the building occupancy; Values are obtained from ASCE 7-05 table (6-1)
$\mathrm{K}_{2}=$ the velocity pressure exposure coefficient, which is a function of height and depends upon the ground terrain. Hibbeler 7th edition Table 1-5 lists values for a structure which is located in open terrain with scattered low-lying obstructions.
$\mathrm{K}_{\mathrm{zt}}=\mathrm{a}$ factor that accounts for wind speed increases due to hills and escarpments. For fiat ground $\mathrm{K}_{2 \mathrm{t}}=1$.
$K_{d}=$ a factor that accounts for the direction of the wind. It is used only when the structure is subjected to combinations of loads Values are obtained from ASCE 7-05 table (6-4)

Table of Velocity pressure Exposure Coefficient for Terrain with Low-Lying Obstructions

$\mathbf{Z (m)}$	$\mathrm{K}_{\mathbf{z}}$
$\mathbf{0 - 4 . 6}$	0.85
$\mathbf{6 . 1}$	0.90
$\mathbf{7 . 6}$	0.94
$\mathbf{9 . 1}$	0.98
$\mathbf{1 2 . 2}$	1.04
$\mathbf{1 5 . 2}$	1.09

Design Wind Pressure for Enclosed Buildings. Once the value for qz is obtained, the design pressure can be determined from a list of relevant equations listed in the ASCE 7-05 Standard. The choice depends upon the flexibility and height of the structure, and whether the design is for the main wind-force resisting system, or for the building's components and cladding. For example, for a conservative design wind-pressure on nonflexible buildings of any height is determined using a two-termed equation -resulting from both external and internal pressures, namely,

$$
\begin{equation*}
P=q G C_{p}-q_{h}\left(G C_{p i}\right) \tag{ASCE7-05eq.6-19}
\end{equation*}
$$

Here
$q=q_{z}$ for the windward wall at height z above the ground (last Eq.), and $q=q$ for the leeward walls, side walls, and roof, where $z=h$, the mean height of the roof.
$\mathrm{G}=$ a wind-gust effect factor, which depends upon the exposure. For example, for a rigid structure,
$\mathrm{G}=0.85$.
$\mathrm{C}_{\mathrm{p}}=$ a wall or roof pressure coefficient determined from ASCE 7-05 table (6-1).
$\left(G C_{\mathrm{pi}}\right)=$ the internal pressure coefficient which depends upon the type of openings in the building. For fully enclosed buildings ($\mathrm{GC}_{\mathrm{pi}}$) $= \pm 0.18$ ASCE $7-05$ figure ($6-5$). Here the signs indicate that either positive or negative (suction) pressure can occur within the building.

Table (1)

Table (2)

Notes:

1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2. Linear interpolation is permitted for values of $L / B, h / L$ and θ other than shown. Interpolation shall only be carried out between values of the same sign. Where no value of the same sign is given, assume 0.0 for interpolation purposes.
3. Where two values of C_{p} are listed, this indicates that the windward roof slope is subjected to either positive or negative pressures and the roof structure shall be designed for both conditions. Interpolation for intermediate ratios of h / L in this case shall only be carried out between C_{p} values of like sign.
4. For monoslope roofs, entire roof surface is either a windward or leeward surface.
5. For flexible buildings use appropriate G_{f} as determined by Section 6.5.8.
6. Refer to Figure 6-7 for domes and Figure 6-8 for arched roofs.
7. Notation:
B : Horizontal dimension of building, in feet (meter), measured normal to wind direction.
L : Horizontal dimension of building, in feet (meter), measured parallel to wind direction.
h : Mean roof height in feet (meters), except that eave height shall be used for $\theta \leq 10$ degrees.
z : Height above ground, in feet (meters).
G : Gust effect factor.
q_{z}, q_{h} : Velocity pressure, in pounds per square foot $\left(\mathrm{N} / \mathrm{m}^{2}\right)$, evaluated at respective height.
θ : Angle of plane of roof from horizontal, in degrees.
8. For mansard roofs, the top horizontal surface and leeward inclined surface shall be treated as leeward surfaces from the table.
9. Except for MWFRS's at the roof consisting of moment resisting frames, the total horizontal shear shall not be less than that determined by neglecting wind forces on roof surfaces.
\#For roof slopes greater than 80°, use $C_{p}=0.8$

For our project

Fig. (8)
$\mathrm{V}=95 \mathrm{~km} / \mathrm{hr}$
or $26.389 \mathrm{~m} / \mathrm{s}$
$\mathrm{I}=1.0$ from ASCE 7-05 table 6-1 class 2
$\mathrm{K}_{\mathrm{zt}}=1.0$ assuming flat ground
$K_{d}=0.85$ from ASCE 7-05 table 6-4

$$
\mathrm{q}_{\mathrm{z}}=0.613 \mathrm{~K}_{\mathrm{z}} \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{d}} \mathrm{~V}^{2} \mathrm{I} \quad\left(\mathrm{~N} \backslash \mathrm{~m}^{2}\right)
$$

(ASCE 7-05 eq. 6-15)
$\mathrm{q}_{\mathrm{z}}=0.613 * \mathrm{~K}_{\mathrm{z}} * 1.0 * 0.85 * 26.389^{2 *} 1.0$
$=362.845 * \mathrm{~K}_{\mathrm{z}}$
$\mathrm{h}=7 \mathrm{~m}+2.8 \mathrm{~m} \quad$ (because $\Theta<10$ deg.)
Table (3)

$\mathbf{Z}(\mathrm{m})$	K_{z}	$\mathrm{q}_{\mathrm{z}}\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$\mathbf{0 - 4 . 6}$	0.85	308.42
$\mathbf{6 . 1}$	0.9	326.56
$\mathbf{7 . 6}$	0.94	341.07
$\mathbf{9 . 1}$	0.98	355.59
$\mathbf{h}=9.8$	0.999	362.36

$$
\begin{gathered}
P=q G C_{p}-q_{h}\left({\left.G C_{p i}\right)}^{\prime}\right. \\
=q^{*} 0.85^{*} C_{p}-362.36(-+0.18) \\
=0.85^{*} q^{*} C_{p}-\&+65.22
\end{gathered}
$$

Windward Wall

From $\mathrm{z}=7 \mathrm{~m}$ to $8.4 \mathrm{~m}\left(\mathrm{C}_{\mathrm{p}}=0.8, \mathrm{q}=\mathrm{q}_{\mathrm{z}}\right)$
$q_{7-8.4}=166.71 \mathrm{~N} / \mathrm{m}^{2}$ or $297.15 \mathrm{~N} / \mathrm{m}^{2}$

Leeward Wall

$L / B=28 / 40=0.7$
then $C_{p}=-0.5, q=q_{h}$
$\mathrm{p}=-219.22 \mathrm{~N} / \mathrm{m}^{2}$ or $-88.78 \mathrm{~N} / \mathrm{m}^{2}$
Roof
according to $\Theta=5.7106<10$ s
First value:

$$
\begin{aligned}
C_{p} & =-0.9 \text { for distance } 0 \text { to } h \\
C_{p} & =-0.5 \text { for distance } h \text { to } 2 h \\
C_{p} & =-0.3 \text { for distance }>2 h
\end{aligned}
$$

Second value:
$C_{p}=-0.18$ for distance 0 to end.
When $C_{p}=-0.9$ then $p=-342.43 \mathrm{~N} / \mathrm{m}^{2} \quad$ or $-211.99 \mathrm{~N} / \mathrm{m}^{2}$
When $\mathrm{C}_{\mathrm{p}}=-0.5$ then $\mathrm{p}=-219.22 \mathrm{~N} / \mathrm{m}^{2}$ or $-88.78 \mathrm{~N} / \mathrm{m}^{2}$
When $C_{p}=-0.3$ then $p=-157.62 \mathrm{~N} / \mathrm{m}^{2}$ or $-27.18 \mathrm{~N} / \mathrm{m}^{2}$
When $C_{p}=-0.18$ then $p=-120.66 \mathrm{~N} / \mathrm{m}^{2} \quad$ or $9.77 \mathrm{~N} / \mathrm{m}^{2}$
The load cases are showing in figure 9.

Fig. (9)
Here we will apply the loads for both cases in the two directions (from the left and from the right) as shown here.

Load case A

Applying wind load from the left as showing in figure 10

Fig. (10)

Applying wind load from the right as showing in figure 11

Fig. (11)

Load case B

Applying wind load from the left as showing in figure 12

Fig. (12)

Applying wind load from the right as showing in figure 13

Fig. (13)
to analysis the truss due to load cases we will use the graphical method using computer program like Auto CAD as shown with load case 1 and the other we will use structural analysis program like STAAD Pro, The values of internal force writer in table 4. Labeling of spaces between forces figure 14.

Fig. (14)
Drawing the graph figure 15.

Fig. (15)
The loads due to load case 1 are shown in figure 16. (Red members for compression and blue members for tension member for all figures in this project)

Fig. (16)

Design of Purlins

Calculation of load per 1 m

Live Load

$\mathrm{L}=1 \mathrm{kN} / \mathrm{m}^{2}$ ASCE 7-05 table (4-1) on the horizontal projection.
$\mathrm{L}=1 \cos \theta=0.995 \mathrm{kN} / \mathrm{m}^{2}$ on inclined length.
Live load on internal purlin $=0.995 * 2.8=2.786 \mathrm{kN} / \mathrm{m}$.

Snow Load

$\mathrm{S}=1.2 \mathrm{kN} / \mathrm{m}^{2}$ on the horizontal projection.
$\mathrm{L}=1.2 \cos \theta=1.194 \mathrm{kN} / \mathrm{m}^{2}$ on inclined length.
Snow load on internal purlin $=1.194 * 2.8=3.343 \mathrm{kN} / \mathrm{m}$.

Roofing Load

In general roofing load taken between $(0.3-1.0) \mathrm{kN} / \mathrm{m}^{2}$, in our project we will take it $0.575 \mathrm{kN} / \mathrm{m}^{2} \rightarrow 0.575^{*} 2.8=1.609 \mathrm{kN} / \mathrm{m}$ on purlin $\rightarrow 1.609 * 4=6.436 \mathrm{kN}$ on nod

Roofing load per unit length on internal truss $=0.575 * 2.8=1.609 \mathrm{kN} / \mathrm{m}$.

Wind Load

The critical wind load is load case B , then $\mathrm{W}=9.77 * 10^{-3} * 2.8=0.027 \mathrm{kN} / \mathrm{m}$.

Load Combinations

$$
\begin{aligned}
* & \mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}(1.609)+(1.6) *(2.786)+(0.5) *(3.343)\right\} \cos \theta=8.020 \mathrm{kN} / \mathrm{m} . \\
* & \mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}(1.609)+(1.6)^{*}(3.343)+(0.5) *(2.786)\right\} \cos \theta=8.630 \mathrm{kN} / \mathrm{m} \\
& \text { or }=\left\{(1.2)^{*}(1.609)+(1.6)^{*}(3.343)\right\} \cos \theta+(0.8) *(0.027)=7.265 \mathrm{kN} / \mathrm{m} . \\
* & \mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}(1.609)+(0.5) *(2.786)+(0.5) *(3.343)\right\} \cos \theta+1.6^{*} 0.027=5.014 \mathrm{kN} / \mathrm{m} .
\end{aligned}
$$

$\mathrm{M}_{\mathrm{ux}}=\frac{w_{u x} * l^{2}}{8}=\frac{8.630 * 4^{2}}{8}=17.26 \mathrm{kN} . \mathrm{m}$
$\mathrm{w}_{\mathrm{uy}}=\left\{(1.2)^{*}(1.609)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \sin \theta=0.8630 \mathrm{kN} / \mathrm{m}$.
$\mathrm{M}_{\mathrm{uy}}=\frac{w_{u y *} l^{2}}{32}=\frac{0.863 * 4^{2}}{32}=0.4315 \mathrm{kN} . \mathrm{m}$ one sag rod is used in mid point of the purlin
Here we will use calculation to find the suitable cold rolled section then we will create table 4 to other sections to use it in the design as follow

Try C180x250

Area $=2.5 *(180+2 * 40+2 * 16)=730 \mathrm{~mm}^{2}$
(ROOF TRUSS) Structural Steel Project
$Z_{x}=2 * 2.5(90 * 45+40 * 88.75+16 * 82)=44560 \mathrm{~mm}^{3}$
Distance from the inner face toward the back (x)

$$
\left(2^{*} 2.5^{*}\right)(40+16)+180 X=180(2.5-X) \rightarrow X=0.47222 \mathrm{~mm}
$$

$\mathrm{Z}_{\mathrm{y}}=\left\{\{2.5-0.47222)^{2} * 180 / 2\right\}+2 * 2.5\{(40 * 20.47222)+(16 *(46.25+.47222))\}+\{180 / 2$
$\left.{ }^{*} 0.47222^{2}\right\}=7822.36 \mathrm{~mm}^{3}$
$w_{u x}=\left\{(1.2)^{*}\left(1.609+5.23 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \cos \theta=8.691$

kN / m.
$\mathrm{w}_{\mathrm{uy}}=\left\{(1.2)^{*}\left(1.609+5.23 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \sin \Theta=0.8691 \mathrm{kN} / \mathrm{m}$.
$\mathrm{M}_{\mathrm{ux}}=\frac{w_{u x * l^{2}}}{8}=\frac{8.691 * 4^{2}}{8}=17.382 \mathrm{kN} . \mathrm{m}$
$M_{u y}=\frac{w_{u y * l^{2}}}{32}=\frac{0.8691 * 4^{2}}{32}=0.435 \mathrm{kN} . \mathrm{m}$
$M_{p x}=0.9 * 400 * 44560 * 10^{-6}=16.042 \mathrm{kN} . \mathrm{m}$
$M_{p y}=0.9 * 400 * 7822.36 * 10^{-6}=2.8161 \mathrm{kN} . \mathrm{m}$
$\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}} \leq 1.0 \rightarrow \frac{17.382}{16.042}+\frac{0.435}{2.8161}=1.238 \rightarrow$ Try lager one using table

Section	$\begin{aligned} & \begin{array}{l} \text { Weight } \\ (\mathrm{kg} / \mathrm{m}) \end{array} \end{aligned}$	$\begin{gathered} \hline \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \mathrm{T} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{B} \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Area } \\ \text { (mm2) } \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Zx} \\ (\mathrm{~mm} 3) \end{gathered}$	$\begin{gathered} \hline \mathrm{Zy} \\ (\mathrm{~mm} 3) \end{gathered}$	$\begin{gathered} \Phi M \mathrm{Mpx} \\ \left(\mathrm{kN}{ }^{*} \mathrm{~m}\right) \end{gathered}$	$\begin{aligned} & \text { ФМру } \\ & \left(\mathrm{kN}{ }^{*} \mathrm{~m}\right) \end{aligned}$
C180x150	3.40	180	1.5	45	444	27331.5	4887.7	9.839	1.7596
C180x200	4.48	180	2.0	45	588	36044	6385.8	12.976	2.2989
C180x250	5.56	180	2.5	45	730	44560	7822.361	16.042	2.8161
C210x150	3.93	210	1.5	45	489	34329	4910.582	12.358	1.7678
C210x200	5.23	210	2.0	45	648	45314	6426.114	16.313	2.3134
C210x250	6.54	210	2.5	45	805	56072.5	7884.792	20.186	2.8385
C258×150	4.79	258	1.5	60	606	52700.25	7908.401	18.972	2.8470
C258x200	6.38	258	2.0	60	804	69698	10385.63	25.091	3.7388
C258x250	7.98	258	2.5	60	1000	86413.75	12787.26	31.109	4.6034

Table (4)
Try C 210×250 weight $=6.54 \mathrm{~kg} / \mathrm{m}$
$\mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}\left(1.609+6.54^{*} 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \cos \theta=8.706 \mathrm{kN} / \mathrm{m}$.
$\mathrm{w}_{\mathrm{uy}}=\left\{(1.2)^{*}\left(1.609+6.54 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \sin \Theta=0.8706 \mathrm{kN} / \mathrm{m}$.
$\mathrm{M}_{\mathrm{ux}}=\frac{w_{u x * l^{2}}}{8}=\frac{8.706 * 4^{2}}{8}=17.412 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{uy}}=\frac{w_{u y * l^{2}}}{32}=\frac{0.8706 * 4^{2}}{32}=0.435 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{px}}=20.186 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{py}}=2.8385 \mathrm{kN} . \mathrm{m}$
$\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}} \leq 1.0 \rightarrow \frac{17.412}{20.186}+\frac{0.435}{2.8385}=1.0158 \rightarrow$ Try lager one
Try C258x150 weight $=4.79 \mathrm{~kg} / \mathrm{m}$
$\mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}\left(1.609+4.79 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \cos \theta=8.686 \mathrm{kN} / \mathrm{m}$.
$\mathrm{w}_{\mathrm{uy}}=\left\{(1.2)^{*}\left(1.609+4.79 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \sin \theta=0.8686 \mathrm{kN} / \mathrm{m}$.
$\mathrm{M}_{\mathrm{ux}}=\frac{w_{u x} * l^{2}}{8}=\frac{8.686 * 4^{2}}{8}=17.371 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{uy}}=\frac{w_{u y * l^{2}}}{32}=\frac{0.8686 * 4^{2}}{32}=0.434 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{px}}=18.972 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{py}}=2.8470 \mathrm{kN} . \mathrm{m}$
$\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}} \leq 1.0 \rightarrow \frac{17.371}{18.972}+\frac{0.434}{2.847}=1.068 \rightarrow$ Try lager one
Try C258×200 weight $=6.38 \mathrm{~kg} / \mathrm{m}$
$\mathrm{w}_{\mathrm{ux}}=\left\{(1.2)^{*}\left(1.609+6.38^{*} 9.81^{*} 10^{-3}\right)+(1.6)^{*}(3.343)+(0.5) *(2.786)\right\} \cos \theta=8.704 \mathrm{kN} / \mathrm{m}$.
$w_{\text {uy }}=\left\{(1.2)^{*}\left(1.609+6.38 * 9.81 * 10^{-3}\right)+(1.6) *(3.343)+(0.5) *(2.786)\right\} \sin \theta=0.8704 \mathrm{kN} / \mathrm{m}$.
$\mathrm{M}_{\mathrm{ux}}=\frac{w_{u x} * l^{2}}{8}=\frac{8.704 * 4^{2}}{8}=17.409 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{uy}}=\frac{w_{u y * l^{2}}}{32}=\frac{0.8704 * 4^{2}}{32}=0.4352 \mathrm{kN} . \mathrm{m}$
$M_{p x}=25.091 \mathrm{kN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{py}}=3.7388 \mathrm{kN} . \mathrm{m}$
$\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}} \leq 1.0 \rightarrow \frac{17.409}{25.091}+\frac{0.4352}{3.7388}=0.810 \rightarrow$ OK use C258×200
Loading on each nod of the truss $=\left(9.81 * 10^{-3} * 6.38\right) * 4=0.250 \mathrm{kN}$

Design of Sag Rod

Gravity load in $\mathrm{kN} / \mathrm{m}^{2}$ of roof surface are as follows:
Average weight in $\mathrm{kN} / \mathrm{m}^{2}$ of the six purlin on each side of the roof $=\frac{6 * 0.06259}{14.0698}=0.0267 \mathrm{kN} / \mathrm{m}^{2}$
Live load $=0.995 \mathrm{kN} / \mathrm{m}^{2}$
Snow load $=1.194 \mathrm{kN} / \mathrm{m}^{2}$
Roofing $=0.575 \mathrm{kN} / \mathrm{m}^{2}$
Wind load $=9.77 * 10^{-3} * \cos \theta=0.0097 \mathrm{kN} / \mathrm{m}^{2}$
LRFD load on top inclined sag rod using controlling load factor equation $\mathrm{w}_{\mathrm{u}}=1.2^{*}(0.0267+0.575)+1.6^{*} 1.194+0.5^{*} 0.995=3.01299 \mathrm{kN} / \mathrm{m}^{2}$
Component of load parallel to roof surface $=3.01299 * \sin \theta=0.3114 \mathrm{kN} / \mathrm{m}^{2}$
Loading on top inclined sag rod $=(9 / 10)^{*}(14.0698)^{*}(6)^{*}(0.3114)=23.66 \mathrm{kN}=\mathrm{P}_{\mathrm{u}}$
$\mathrm{A}_{\mathrm{D}}=\frac{P_{u}}{\Phi 0.75 F_{u}}=\frac{23.66 * 1000}{0.75 * 0.75 * 400}=105.17 \mathrm{~mm}^{2}$
Try ($5 / 8-\mathrm{in}$) or (1.5 cm) rod as a minimum practical size 4 threads per $1 \mathrm{~cm}_{\mathrm{D}}=176.7 \mathrm{~mm}^{2}$
$R_{n}=0.75 \mathrm{~F}_{\mathrm{u}} \mathrm{A}_{\mathrm{D}}=0.75 * 400 * 176.7 * 10^{-3}=53.01 \mathrm{kN}$
$\Phi R_{n}=0.75$ * $53.01=39.76 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
Use 1.5 cm
Check force in tie rod between ridge purlins
$\mathrm{P}_{\mathrm{u}}=14.0698$ * 6 * 0.3114 * $1 / \cos \theta=26.42 \mathrm{kN}<39.76 \mathrm{kN}$
Use 1.5 cm rod
(ROOF TRUSS) Structural Steel Project

Table (5) Internal Forces.

$\begin{aligned} & \stackrel{\vdots}{ \pm} \\ & \stackrel{0}{\xi} \\ & \dot{\Sigma} \end{aligned}$	N	コ	u	$\begin{aligned} & -1 \\ & 3 \end{aligned}$	$\begin{aligned} & N \\ & \vdots \end{aligned}$	$\begin{aligned} & m \\ & 3 \end{aligned}$	$\begin{aligned} & \pm \\ & 3 \end{aligned}$	$\begin{aligned} & \underset{3}{3} \\ & \underset{\Sigma}{x} \\ & \underset{\Sigma}{x} \end{aligned}$	$\begin{aligned} & \sum_{\sum}^{\Sigma} \\ & \sum \end{aligned}$		$\frac{\underline{\underline{I}}}{\bar{z}}$
1	7.5	83.6	100.3	-11.3	-8.5	-1.3	1.6	1.6	-11.3	48.3	1.9
2	7.5	83.6	100.3	-11.3	-8.5	-1.3	1.6	1.6	-11.3	48.3	1.9
3	13.125	146.3	175.5	-19.3	-15.5	-1.3	2.5	2.5	-19.3	84.5	3.3
4	13.125	146.3	175.5	-19.3	-15.5	-1.3	2.5	2.5	-19.3	84.5	3.3
5	12.5	139.3	167.2	-18.6	-14.3	-1.7	2.6	2.6	-18.6	80.5	3.1
6	0	0.0	0.0	-0.9	1.3	-1.7	0.5	1.3	-1.7	0.0	0.0
7	-11.486	-128.0	-153.6	15.3	16.2	-2.1	-1.2	16.2	-2.1	-73.9	-2.9
8	-11.486	-128.0	-153.6	15.4	16.3	-2.2	-1.2	16.3	-2.2	-73.9	-2.9
9	-13.4	-149.3	-179.2	18.3	18.6	-1.9	-1.7	18.6	-1.9	-86.2	-3.4
10	-13.4	-149.3	-179.2	18.5	18.7	-1.9	-1.7	18.7	-1.9	-86.2	-3.4
11	-0.5	-5.6	-6.7	0.6	0.8	-0.2	0.0	0.8	-0.2	-3.2	-0.1
13	-1	-11.1	-13.4	1.4	1.4	-0.1	-0.1	1.4	-0.1	-6.4	-0.3
15	-1	-11.1	-13.4	1.4	1.4	-0.1	-0.1	1.4	-0.1	-6.4	-0.3
17	-8.746	-97.5	-117.0	12.1	11.3	-0.4	-1.3	12.1	-1.3	-56.3	-2.2
18	4.581	51.1	61.3	-6.4	-5.8	0.1	0.7	0.7	-6.4	29.5	1.1
19	-2.172	-24.2	-29.0	3.1	2.6	0.1	-0.4	3.1	-0.4	-14.0	-0.5
20	0.267	3.0	3.6	-0.5	-0.1	-0.2	0.2	0.2	-0.5	1.7	0.1
21	1.179	13.1	15.8	-1.5	-1.8	0.3	0.0	0.3	-1.8	7.6	0.3
22	7.5	83.6	100.3	-12.8	-7.0	-2.7	3.0	3.0	-12.8	48.3	1.9
23	7.5	83.6	100.3	-12.8	-7.0	-2.7	3.0	3.0	-12.8	48.3	1.9
24	13.125	146.3	175.5	-19.8	-14.9	-1.8	3.0	3.0	-19.8	84.5	3.3
25	13.125	146.3	175.5	-19.8	-14.9	-1.8	3.0	3.0	-19.8	84.5	3.3
26	12.5	139.3	167.2	-18.6	-14.3	-1.7	2.6	2.6	-18.6	80.5	3.1
27	0	0.0	0.0	1.3	-0.9	0.5	-1.7	1.3	-1.7	0.0	0.0
28	-11.486	-128.0	-153.6	16.2	15.3	-1.2	-2.1	16.2	-2.1	-73.9	-2.9
29	-11.486	-128.0	-153.6	16.3	15.4	-1.2	-2.2	16.3	-2.2	-73.9	-2.9
30	-13.4	-149.3	-179.2	18.6	18.3	-1.7	-1.9	18.6	-1.9	-86.2	-3.4
31	-13.4	-149.3	-179.2	18.7	18.5	-1.7	-1.9	18.7	-1.9	-86.2	-3.4
32	-0.5	-5.6	-6.7	0.8	0.6	0.0	-0.2	0.8	-0.2	-3.2	-0.1
34	-1	-11.1	-13.4	1.4	1.4	-0.1	-0.1	1.4	-0.1	-6.4	-0.3
36	-1	-11.1	-13.4	1.4	1.4	-0.1	-0.1	1.4	-0.1	-6.4	-0.3
37	-8.746	-97.5	-117.0	11.3	12.1	-1.3	-0.4	12.1	-1.3	-56.3	-2.2
38	4.581	51.1	61.3	-5.8	-6.4	0.7	0.1	0.7	-6.4	29.5	1.1
39	-2.172	-24.2	-29.0	2.6	3.1	-0.4	0.1	3.1	-0.4	-14.0	-0.5
40	0.267	3.0	3.6	-0.1	-0.5	0.2	-0.2	0.2	-0.5	1.7	0.1
41	1.179	13.1	15.8	-1.8	-1.5	0.0	0.3	0.3	-1.8	7.6	0.3

Table (6) Load combinations.

$\underset{\sim}{\text { Q }}$												
		A	B	C			A	B	Design	Design		
96.2	266.3	284.7	244.2	233.8	176.9	144.3	64.3	43.7	284.7	43.7	NA	1
96.2	266.3	284.7	244.2	233.8	176.9	144.3	64.3	43.7	284.7	43.7	NA	2
168.3	466.0	498.2	427.1	409.6	309.1	252.5	112.2	77.3	498.2	77.3	NA	3
168.3	466.0	498.2	427.1	409.6	309.1	252.5	112.2	77.3	498.2	77.3	NA	4
160.3	443.8	474.5	406.9	390.0	294.8	240.5	107.2	73.3	474.5	73.3	NA	5
0.1	0.1	0.1	1.1	-1.3	2.1	0.1	2.1	-2.6	2.1	-2.6	Reversal	6
-147.1	-407.7	-435.9	-358.9	-373.6	-241.0	-220.8	-68.7	-98.0	-68.7	-435.9	NA	7
-147.1	-407.7	-435.9	-358.8	-373.6	-240.8	-220.8	-68.5	-98.0	-68.5	-435.9	NA	8
-171.7	-475.7	-508.5	-419.0	-435.4	-281.7	-257.6	-80.6	-113.4	-80.6	-508.5	NA	9
-171.7	-475.7	-508.5	-418.9	-435.4	-281.5	-257.6	-80.4	-113.5	-80.4	-508.5	NA	10
-6.4	-17.7	-19.0	-15.5	-16.4	-10.3	-9.6	-2.8	-4.5	-2.8	-19.0	NA	11
-12.8	-35.5	-37.9	-31.3	-32.5	-21.1	-19.2	-6.1	-8.4	-6.1	-37.9	NA	13
-12.8	-35.5	-37.9	-31.3	-32.5	-21.1	-19.2	-6.1	-8.4	-6.1	-37.9	NA	15
-112.1	-310.5	-331.9	-273.5	-284.2	-183.8	-168.2	-52.6	-74.0	-52.6	-331.9	NA	17
58.7	162.6	173.9	148.9	143.2	107.6	88.1	38.9	27.5	173.9	27.5	NA	18
-27.8	-77.1	-82.4	-67.9	-70.7	-45.5	-41.8	-12.9	-18.6	-12.9	-82.4	NA	19
3.4	9.5	10.1	8.8	8.3	6.5	5.1	2.5	1.4	10.1	1.4	NA	20
15.1	41.8	44.7	38.4	36.7	27.9	22.7	10.3	6.8	44.7	6.8	NA	21
96.4	266.5	284.9	245.5	232.8	179.4	144.5	66.8	41.5	284.9	41.5	NA	22
96.4	266.5	284.9	245.5	232.8	179.4	144.5	66.8	41.5	284.9	41.5	NA	23
168.3	466.1	498.2	427.6	409.3	310.1	252.5	113.1	76.5	498.2	76.5	NA	24
168.3	466.1	498.2	427.6	409.3	310.1	252.5	113.1	76.5	498.2	76.5	NA	25
160.3	443.8	474.5	406.9	390.0	294.8	240.5	107.2	73.3	474.5	73.3	NA	26
-0.2	-0.2	-0.2	0.8	-1.5	1.9	-0.2	1.9	-2.8	1.9	-2.8	Reversal	27
-147.2	-407.8	-436.0	-359.0	-373.7	-241.1	-220.9	-68.8	-98.1	-68.8	-436.0	NA	28
-147.2	-407.8	-436.0	-358.9	-373.7	-240.9	-220.9	-68.5	-98.1	-68.5	-436.0	NA	29
-171.7	-475.7	-508.5	-419.0	-435.4	-281.7	-257.7	-80.6	-113.5	-80.6	-508.5	NA	30
-171.7	-475.7	-508.5	-418.9	-435.4	-281.5	-257.7	-80.4	-113.5	-80.4	-508.5	NA	31
-6.4	-17.8	-19.0	-15.6	-16.4	-10.4	-9.6	-2.8	-4.5	-2.8	-19.0	NA	32
-12.8	-35.5	-37.9	-31.3	-32.5	-21.1	-19.2	-6.1	-8.4	-6.1	-37.9	NA	34
-12.8	-35.5	-37.9	-31.3	-32.5	-21.1	-19.2	-6.1	-8.4	-6.1	-37.9	NA	36
-111.9	-310.4	-331.8	-273.4	-284.1	-183.7	-168.1	-52.5	-74.0	-52.5	-331.8	NA	37

(ROOF TRUSS) Structural Steel Project

$\mathbf{5 8 . 6}$	162.6	173.8	148.8	143.1	107.5	88.0	38.8	27.4	173.8	27.4	NA	38
$\mathbf{- 2 7 . 8}$	-77.1	-82.4	-67.8	-70.6	-45.5	-41.7	-12.9	-18.5	-12.9	-82.4	NA	39
$\mathbf{3 . 4}$	9.4	10.1	8.7	8.2	6.4	5.1	2.4	1.4	10.1	1.4	NA	40
$\mathbf{1 5 . 1}$	41.9	44.8	38.5	36.7	28.0	22.7	10.3	6.8	44.8	6.8	NA	41

Table (7) Final Internal forces.

	+ve Max Force (kN)	-ve Max Force (kN)	Type of force	Member	Length	Final design load (kN)
	Design	Design				
Lower Chord Members 2LBB	284.6941	43.66425	Tension	1	2.8	284.6941
	284.6941	43.66425	Tension	2	2.8	284.6941
	498.1851	77.33111	Tension	3	2.8	498.1851
	498.1851	77.33111	Tension	4	2.8	498.1851
	474.491	73.29334	Tension	5	2.8	474.491
	284.867	41.48674	Tension	22	2.8	284.867
	284.867	41.48674	Tension	23	2.8	284.867
	498.2499	76.51571	Tension	24	2.8	498.2499
	498.2499	76.51571	Tension	25	2.8	498.2499
	474.491	73.29334	Tension	26	2.8	474.491
Upper Chord Members 2LBB	2.14248	-2.64034	Reversal	6	2.814	Reversal
	-68.67	-435.856	Comp.	7	2.814	435.8559
	-68.455	-435.857	Comp.	8	2.814	435.8573
	-80.6214	-508.519	Comp.	9	2.814	508.5187
	-80.4048	-508.52	Comp.	10	2.814	508.52
	1.93218	-2.83582	Reversal	27	2.814	Reversal
	-68.7538	-435.968	Comp.	28	2.814	435.9677
	-68.5388	-435.969	Comp.	29	2.814	435.969
	-80.6431	-508.548	Comp.	30	2.814	508.5476
	-80.4265	-508.549	Comp.	31	2.814	508.5489
3	-2.82931	-18.9677	Comp.	11	1.4	18.96774
	0	0	Zero	12	1.68	0
	-6.05943	-37.9472	Comp.	13	1.96	37.94724
	0	0	Zero	14	2.24	0
	-6.05943	-37.9472	Comp.	15	2.52	37.94724
	0	0	Zero	16	2.8	0
	-52.6074	-331.922	Comp.	17	3.265	331.9217
	173.8615	27.48048	Tension	18	3.265	173.8615
	-12.9315	-82.4422	Comp.	19	3.586	82.44217
	10.14819	1.439439	Tension	20	3.586	10.14819

(ROOF TRUSS) Structural Steel Project

	44.72531	6.759223	Tension	21	3.96	44.72531
	-2.84875	-18.9937	Comp.	32	1.4	18.99366
	0	0	Zero	33	1.68	0
	-6.05943	-37.9472	Comp.	34	1.96	37.94724
	0	0	Zero	35	2.24	0
	-6.05943	-37.9472	Comp.	36	2.52	37.94724
	-52.5318	-331.821	Comp.	37	3.265	331.8209
	173.7895	27.42648	Tension	38	3.265	173.7895
	-12.887	-82.3829	Comp.	39	3.586	82.38289
	10.10211	1.404879	Tension	40	3.586	10.10211
	44.76611	6.789823	Tension	41	3.96	44.76611

Design of members

Zero members

A36 ($\mathrm{F}_{\mathrm{y}}=248 \mathrm{MPs}, \mathrm{F}_{\mathrm{u}}=400 \mathrm{MPs}$)
We will use L50x50x6
($\mathrm{A}=569 \mathrm{~mm}^{2}, \bar{x}=\bar{y}=14.5 \mathrm{~mm}, \mathrm{r}_{2}=9.7 \mathrm{~mm}, \mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{y}}=15 \mathrm{~mm}$)
a) Gross section yielding for angle

$$
\begin{aligned}
\Phi \mathrm{P}_{\mathrm{n}} & =0.9 \mathrm{~A}_{\mathrm{g}} \mathrm{~F}_{\mathrm{y}} \\
& =0.9569 * 248 * 10^{-3} \\
& =\underline{127 \mathrm{kN}}
\end{aligned}
$$

b) Tensile rupture strength for angle
$\Phi \mathrm{P}_{\mathrm{n}}=0.75 \mathrm{~A}_{\mathrm{e}} \mathrm{F}_{\mathrm{u}}$
$A_{n}=569-6(16+4)=449 \mathrm{~mm}^{2}$
Minimum edge distance equal (1.5 ~ 2) d
$(24 \mathrm{~mm} \sim 32 \mathrm{~mm}$) take it 30 mm
Center to center distance equal ($2 \frac{2}{3} \sim 3$) d ($43 \mathrm{~mm} \sim 48 \mathrm{~mm}$) take it 45 mm
$U=1-\frac{\bar{x}}{L}=1-\frac{14.5}{45}=0.678 \leftarrow$
$\mathrm{U}=0.6$ AISC-05 table D3-1 case 8
$A_{e}=U A_{n}=0.678 * 449=304.32 \mathrm{~mm}^{2}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.75 * 304.32 * 400 * 10^{-3}=\underline{91.32 \mathrm{kN}}$
c) Block shear strength

$R_{n}=0.6 A_{n v} F_{u}+U_{s} A_{n t} F_{u} \leq 0.6 A_{g v} F_{y}+U_{s}$
$\mathrm{A}_{\mathrm{nt}} \mathrm{F}_{\mathrm{u}}$
$\mathrm{A}_{\mathrm{gy}}=6^{*}(45+30)=450 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{ny}}=450-1.5^{*} 6^{*} 20=270 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{nt}}=6\left(25-.5^{*} 20\right)=90 \mathrm{~mm}^{2}$
$\mathrm{R}_{\mathrm{n}}=10^{-3}\left(0.6^{*} 270 * 400+1.0 * 90 * 400\right) \leq 10^{-3}(0.6 * 450 * 248+1.0 * 90 * 400)$
$=100.8<102.96$
$\Phi R_{n}=0.75^{*} R_{n}=\underline{75.6 \mathrm{kN}}$
d) slenderness ratio
$\frac{\mathrm{Kl}}{r}=\frac{2800}{9.7}=288.66<300 \mathrm{OK}$
e) Bearing strength of bolts
$R_{\text {n of 1bolt }}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F}_{\mathrm{u}}$
$\mathrm{L}_{\mathrm{c}}=30-0.5^{*} 20=\underline{20 \mathrm{~mm}}$ or $\mathrm{L}_{\mathrm{c}}=45-1^{*} 20=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=2(1.2 * 20 * 6 * 400) * 10^{-3} \leq 2 * 10^{-3}(2.4 * 16 * 6 * 400)$
$=115.2<184.32$
$\Phi R_{n}=0.75 \mathrm{R}_{\mathrm{n}}=\underline{86.4 \mathrm{kN}}$
f) Shearing strength of bolts

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{n} \text { of 1bolt }}=\mathrm{F}_{\mathrm{nv}} \mathrm{~A}_{\mathrm{b}}=2\left(330 * \frac{\pi 16^{2}}{4}\right) * 10^{-3}=132.7 \mathrm{kN} \\
& \Phi \mathrm{R}_{\mathrm{n}}=0.75 * \mathrm{R}_{\mathrm{n}}=\underline{99.526 \mathrm{kN}}
\end{aligned}
$$

\therefore Use L50x50x6 for members No. (12, 14, 16, 33, 35)

Checking compression strength of L50x50x6 with 1.96 m length
$\frac{L}{r_{x}}=\frac{1960}{15}=130.66>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 130.66=195.325$
, $4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{~F}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{195.325^{2}}=51.735 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 51.735=45.372 \mathrm{MPs}$
$\mathrm{P}_{\mathrm{n}}=\mathrm{A}_{\mathrm{g}} \mathrm{F}_{\mathrm{cr}}=569 * 45.372 * 10^{-3}=25.81 \mathrm{kN}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 \mathrm{P}_{\mathrm{n}}=23.235 \mathrm{kN}$
\therefore Use L50×50x6 for members No. $(11,32)$

For members 20,40
$r_{\text {reqd }}=\frac{3586}{300}=11.953 \mathrm{~mm}$
\therefore Use L65x65x7 for members No. $(20,40)$

For members 21, 41
$r_{\text {reqd }}=\frac{3960}{300}=13.2 \mathrm{~mm}$
\therefore Use L70x70x6 for members No. $(21,41)$

For members 18, 38
$P_{u}=173.8615 \mathrm{kN} 3$

1) $\operatorname{Min} \mathrm{A}_{\mathrm{g}}=\frac{p_{u}}{\emptyset F_{y}}=\frac{173.86 \times 10^{3}}{0.9 \times 248}=779 \mathrm{~mm}^{2}$
2) Assume $U=0.85$
$\operatorname{Min} \mathrm{A}_{\mathrm{g} \text { reqd }}=\frac{p_{u}}{\emptyset F_{u} U}+$ area of bolts hole $=$
$\frac{173.86 \times 10^{3}}{0.75 \times 400 \times 0.85}+(16+4) t$
$=682+20 t$
3) \quad Min $\mathrm{r}_{\text {reqd }}=\frac{3265}{300}$
$=10.88 \mathrm{~mm}$
Try L60×60×8 ($\mathrm{A}=903 \mathrm{~mm}^{2}, \bar{x}=\bar{y}=17.7 \mathrm{~mm}$,
 $\left.r_{z}=11.6 \mathrm{~mm}, r_{x}=r_{y}=18.0 \mathrm{~mm}\right)$
a) Bearing strength of bolts
$\mathrm{R}_{\mathrm{n} \text { of 1bolt }}=1.2 \mathrm{LctFu} \leq 2.4 \mathrm{dt} \mathrm{F}_{\mathrm{u}}$
$\mathrm{L}_{\mathrm{c}}=35-0.5^{*} 20=25 \mathrm{~mm}$ or $\mathrm{L}_{\mathrm{c}}=45-1^{*} 20=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=3(1.2 * 25 * 8 * 400) * 10^{-3} \leq 2 * 10^{-3}\left(2.4^{*} 16 * 8 * 400\right)$
$=288<368.64$
$\Phi R_{n}=0.75 \mathrm{R}_{\mathrm{n}}=\underline{218 \mathrm{kN}} \quad \mathrm{OK}$
b) Shearing strength of bolts
$\mathrm{R}_{\mathrm{n} \text { of 1bolt }}=\mathrm{F}_{\mathrm{nv}} \mathrm{A}_{\mathrm{b}}=3\left(414 * \frac{\pi 16^{2}}{4}\right) * 10^{-3}=249.72 \mathrm{kN}$
$\Phi R_{\mathrm{n}}=0.75 * \mathrm{R}_{\mathrm{n}}=\underline{187.29 \mathrm{kN}}$ (A325M threads are excluded from shear plane)
c) Block shear strength
$R_{n}=0.6 A_{n v} F_{u}+U_{s} A_{n t} F_{u} \leq 0.6 A_{g v} F_{y}+U_{s} A_{n t} F_{u}$
$\mathrm{A}_{\mathrm{gv}}=8^{*}(2 * 45+35)=1000 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{nv}}=1000-2.5^{*} 8^{*} 20=600 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{nt}}=6(30-.5 * 20)=160 \mathrm{~mm}^{2}$
$\mathrm{R}_{\mathrm{n}}=10^{-3}\left(0.6 * 600 * 400+1.0^{*} 160 * 400\right) \leq 10^{-3}\left(0.6^{*} 1000 * 248+1.0^{*} 160 * 400\right)$
$=208<212.8$
$\Phi R_{n}=0.75^{*} \mathrm{R}_{\mathrm{n}}=\underline{156 \mathrm{kN}}<\mathrm{P}_{\mathrm{u}}$ (Not OK try with 4 bolts)
$\mathrm{A}_{\mathrm{gv}}=8^{*}\left(3^{*} 45+35\right)=1360 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{nv}}=1360-3.5^{*} 8^{*} 20=800 \mathrm{~mm}^{2}, \mathrm{~A}_{\mathrm{nt}}=6(30-.5 * 20)=160 \mathrm{~mm}^{2}$
$\mathrm{R}_{\mathrm{n}}=10^{-3}(0.6 * 800 * 400+1.0 * 160 * 400) \leq 10^{-3}\left(0.6^{*} 1360 * 248+1.0 * 160 * 400\right)$

$$
=250<266.4
$$

$\Phi R_{n}=0.75^{*} \mathrm{R}_{\mathrm{n}}=192 \mathrm{kN}$ OK
(Note)
No need to recalculate shearing and bearing strength of bolts because it should be safe.
d) Gross section yielding of angle
$\Phi P_{\mathrm{n}}=0.9 \mathrm{~A}_{\mathrm{g}} \mathrm{F}_{\mathrm{y}}$
$=0.9 * 903 * 248 * 10^{-3}$
$=201.5 \mathrm{kN}$ OK
e) tensile rupture strength of angle
$A_{n}=903-8(16+4)=743 \mathrm{~mm}^{2}$

$\mathrm{U}=1-\frac{\bar{x}}{L}=1-\frac{17.7}{3 \times 45}=0.869 \leftarrow$
$\mathrm{U}=0.8$ AISC-05 table D3-1 case 8
$A_{e}=U A_{n}=0.869 * 743=645.7 \mathrm{~mm}^{2}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.75 * 645.7 * 400 * 10^{-3}=193.7 \mathrm{kN}$ OK
\therefore Use L60x60x8 for members No. $(18,38)$

Design of compression web members

For members 13 , 34
$\mathrm{P}_{\mathrm{u}}=37.9472 \mathrm{kN}$
Assume $\frac{K l}{r}=130$ (near from member 11)
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\frac{K l}{r_{z}}<4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=\left(0.658^{\frac{F y}{F_{e}}}\right) F_{y}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{130^{2}}=116.8 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{116.8}}\right) 248=101.97 \mathrm{MPs}$
$\mathrm{P}_{\mathrm{u}}=\mathrm{F}_{\mathrm{cr}} \mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}=\frac{P_{u}}{\emptyset F_{c r}}=\frac{37.9472 \times 10^{3}}{0.9 \times 101.97}=413.47 \mathrm{~mm}^{2}$
Try L60x60x5 ($A=582 \mathrm{~mm}^{2}, r_{\mathrm{z}}=11.7 \mathrm{~mm}, \mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{y}}=18.2 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{1960}{18.2}=107.69>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 107.69=166.615<200$
, $4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{~F}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{166.615^{2}}=71.10 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 71.10=62.359 \mathrm{MPs}$
$P_{n}=A_{g} F_{c r}=582 * 62.359 * 10^{-3}=36.293 \mathrm{kN}$
$\Phi P_{n}=0.9 P_{n}=32.66 \mathrm{kN}$ not OK try lager section
Try L60x60x6 ($A=691 \mathrm{~mm}^{2}, r_{z}=11.7 \mathrm{~mm}, r_{x}=r_{y}=18.2 \mathrm{~mm}$)
$\Phi P_{\mathrm{n}}=0.9 * 691 * 62.359 * 10^{-3}=38.78 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$
\therefore Use L60x60x6 for members No. $(13,34)$

For members 15, 36

We can begin with $\mathrm{L} 65 \times 65 \times 7$ ($\left.A=870 \mathrm{~mm}^{2}, r_{z}=12.6 \mathrm{~mm}, r_{x}=r_{y}=19.6 \mathrm{~mm}\right)$
$\frac{L}{r_{x}}=\frac{2520}{19.6}=128.571>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 128.571=192.71<200$
(ROOF TRUSS) Structural Steel Project
, $4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{Fe}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{128.571^{2}}=53.1498 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 53.1498=46.612 \mathrm{MPs}$
$\Phi P_{n}=0.9 * 813^{*} 46.61^{*} 10^{-3}=36.5 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try L70x70x6 ($\left.A=813 \mathrm{~mm}^{2}, r_{z}=13.7 \mathrm{~mm}, r_{x}=r_{y}=21.3 \mathrm{~mm}\right)$
$\frac{L}{r_{x}}=\frac{2520}{21.3}=118.31>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 118.31=179.887<200$
, $4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{~F}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{179.887^{2}}=60.9999 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877^{*} 60.9999=53.497 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 813 * 53.497 * 10^{-3}=39.14 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
\therefore Use L70x70x6 for members No. $(15,36)$
for members 19, 39
$\mathrm{P}_{\mathrm{u}}=82.4422 \mathrm{kN}$
Assume $\frac{K l}{r}=134$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{134^{2}}=109.93 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 109.93=96.409 \mathrm{MPs}$
$\mathrm{P}_{\mathrm{u}}=\mathrm{F}_{\mathrm{cr}} \mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}=\frac{P_{u}}{\emptyset F_{c r}}=\frac{82.4422 \times 10^{3}}{0.9 \times 96.409}=950.1 \mathrm{~mm}^{2}$
Try $L 75 \times 75 \times 8\left(A=1140 \mathrm{~mm}^{2}, r_{z}=14.5 \mathrm{~mm}, r_{x}=r_{y}=22.7 \mathrm{~mm}\right)$
$\frac{L}{r_{x}}=\frac{3586}{22.7}=157.974>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 157.974=229.5>200$ not OK try larger section
Finding minimum r_{x} from $\frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200$
$\frac{1}{r_{x}}=\frac{1}{1.25 L} \times(200-32) \rightarrow r_{x \min .}=\frac{1.25 L}{168}=26.68 \mathrm{~mm}$
Try L90x90x7 ($\left.A=1220 \mathrm{~mm}^{2}, r_{x}=r_{y}=27.5 \mathrm{~mm}\right)$
$\frac{L}{r_{x}}=\frac{3586}{27.5}=130.4>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 130.4=195<200$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{~F}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{195^{2}}=51.911 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 51.911=45.526 \mathrm{MPs}$ $\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 1220 * 45.526 * 10^{-3}=49.99 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section Try L100×100×8 ($A=1550 \mathrm{~mm}^{2}, r_{x}=r_{y}=30.6 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{3586}{30.6}=117.1895>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 117.1895=178.487<200$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{~F}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{178.487^{2}}=61.961 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877^{*} 61.961=54.34 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 1550 * 54.34 * 10^{-3}=75.8 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try L100x100×10 ($A=1920 \mathrm{~mm}^{2}, r_{x}=r_{y}=30.4 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{3586}{30.4}=117.96>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{\mathrm{Kl}}{r_{z}}=32+1.25 * 117.96=179.45<200$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{Fe}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{\mathrm{Kl}}{\mathrm{r}}\right)^{2}}=\frac{\pi^{2} * 200000}{179.45^{2}}=61.297 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 61.297=53.758 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 1920 * 53.758^{*} 10^{-3}=92.89 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
\therefore Use L100×100×10 for members No. $(19,39)$

For members 17, 37
$\mathrm{P}_{\mathrm{u}}=331.821 \mathrm{kN}$
Assume $\frac{K l}{r}=100<4.71 \sqrt{\frac{E}{F_{y}}}$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{\mathrm{Kl}}{\mathrm{r}}\right)^{2}}=\frac{\pi^{2} * 200000}{100^{2}}=197.39 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{\mathrm{Fy}_{\mathrm{Fe}}}{\mathrm{Fe}}}\right) \mathrm{F}_{y}$
$F_{\mathrm{cr}}=\left(0.658^{\frac{248}{133.755}}\right) 248=146.58 \mathrm{MPs}$
$\mathrm{P}_{\mathrm{u}}=\mathrm{F}_{\mathrm{cr}} \mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}=\frac{P_{u}}{\emptyset F_{c r}}=\frac{331.821 \times 10^{3}}{0.9 \times 146.58}=2515.3 \mathrm{~mm}^{2}$
Try L120×120×11 ($\left.A=2540 \mathrm{~mm}^{2}, r_{z}=23.5 \mathrm{~mm}, r_{x}=r_{y}=36.3 \mathrm{~mm}\right)$
$\frac{L}{r_{x}}=\frac{3265}{36.3}=89.945>80$
$\therefore \frac{K l}{r_{z}}=32+1.25 \frac{L}{r_{x}} \leq 200 \rightarrow \frac{K l}{r_{z}}=32+1.25 * 89.945=144.43<200$
$\frac{K l}{r_{z}}>4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=0.877 \mathrm{Fe}_{\mathrm{e}}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}} \frac{\pi^{2} * 200000}{144.43^{2}}=94.625 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=0.877 * 94.625=82.987 \mathrm{MPs}$ $\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 2540 * 94.625^{*} 10^{-3}=189.707 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section Try L140×140×10 ($A=2720 \mathrm{~mm}^{2}, r_{z}=27.6 \mathrm{~mm}, r_{x}=r_{y}=43 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{3265}{43}=75.93<80$
$\frac{K l}{r_{z}}=72+0.75 * 75.93=128.948$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{128.948^{2}}=118.714 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y}$
$\mathrm{F}_{\mathrm{cr}}=\left(0.658 \frac{248}{\frac{248.714}{14}}\right) 248=103.45 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 2720^{*} 103.45 * 10^{-3}=253.24 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try $\mathrm{L} 150 \times 150 \times 10$ ($A=2930 \mathrm{~mm}^{2}, r_{z}=29.6 \mathrm{~mm}, r_{x}=r_{y}=46.2 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{3265}{46.2}=70.671<80$
$\frac{K l}{r_{z}}=72+0.75 * 70.671=125.003$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{125.003^{2}}=126.324 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y}$
$\mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{126.324}}\right) 248=109.042 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 2930 * 109.042 * 10^{-3}=287.54 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try L150×150×12 ($A=3480 \mathrm{~mm}^{2}, r_{x}=r_{y}=46.0 \mathrm{~mm}$)
$\frac{L}{r_{x}}=\frac{3265}{46.0}=79.783<80$
$\frac{K l}{r_{z}}=72+0.75 * 79.783=125.234$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{\mathrm{Kl}}{\mathrm{r}}\right)^{2}}=\frac{\pi^{2} * 200000}{125.234^{2}}=125.8599 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{\mathrm{Fy}}{\mathrm{Fe}}}\right) \mathrm{F}_{y}$
$\mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{125.8599}}\right) 248=108.7116 \mathrm{MPs}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.9 * 3480 * 108.7116 * 10^{-3}=340.485 \mathrm{kN}$
\therefore Use L150x150x12 for members No. $(17,37)$

Design of Chord members

Design of lower chord

For members 1, 2, 3, 4, 22, 23, 24, 25
$\mathrm{P}_{\mathrm{u}}=498.3 \mathrm{kN}$

Designing 2Ls back to back with 10 mm thickness of slices between the angles

1) \quad min $\mathrm{A}_{\text {g reqd }}=\frac{P_{u}}{\emptyset F_{y}}=\frac{498.3 \times 10^{3}}{0.9 \times 248}=2232.5 \mathrm{~mm}^{2}$
2) $\quad \min \mathrm{A}_{\mathrm{g} \text { reqd }}=\frac{P_{u}}{\emptyset F_{u} U}+$ estimated holes of area $=$

$$
\frac{498.3 \times 10^{3}}{0.75 \times 400 \times 0.85}+2(16+4) t=1954.1+40 t
$$

3) $\min r=\frac{L}{300}=\frac{2800}{300}=9.33 \mathrm{~mm}$

Try 2Ls $75 \times 75 \times 8\left(A=1140 \mathrm{~mm}^{2}, r_{x}=r_{y}=22.7 \mathrm{~mm}\right.$, $\left.\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{y}}=588700 \mathrm{~mm}^{4}, \bar{x}=\bar{y}=21.3 \mathrm{~mm}\right)$
Total area $=2 * 1140=2280 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{x}}=2 * 588700=1177000 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=$
$2\left(588700+2 * 1140 *(5+21.3)^{2}\right)=4331506.4 \mathrm{~mm}^{4}$

$r_{\text {min }}=r_{\mathrm{y}}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{4331506.4}{2280}}=43.587 \mathrm{~mm}$
a) Gross section yielding
$\Phi P_{n}=0.9 * 2280 * 248 * 10^{-3}=508.9 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
b) Tensile rupture strength
$A_{n}=2280-2(16+4) * 8=2200 \mathrm{~mm}^{2}$
$\mathrm{U}=1-\frac{\bar{x}}{L}=1-\frac{21.3}{3 \times 45}=\underline{0.8422}$ or $\mathrm{U}=0.6$ table D-3.1 AISC Manual
$\mathrm{A}_{\mathrm{e}}=0.8422 * 2200=1852.89 \mathrm{~mm}^{2}$
$\Phi P_{n}=0.75 * 1852.89 * 400 * 10^{-3}=555.87 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
c) Slenderness ratio
$\frac{K_{l}}{r}=\frac{2800}{43.587}=64.239<300 \mathrm{OK}$
Check if tie plate is required $r_{\text {min }}=\frac{2800}{300}=9.333 \mathrm{~mm}, r_{z}=14.5 \mathrm{~mm}>r_{\text {min }} \rightarrow$ no need for tie plate
d) Bearing strength of bolts
$R_{n \text { of one bolt }}=1.2 \mathrm{Lc} t$ Fu $\leq 2.4 \mathrm{dtF}_{\mathrm{u}}$
$\mathrm{L}_{\mathrm{c}}=45-1^{*} 20=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=(1.2 * 25 * 8 * 400) * 10^{-3} \leq 10^{-3}(2.4 * 16 * 8 * 400)=96<122.88$
No. of bolts reqd. $=\frac{P_{u}}{\emptyset R_{n}}=\frac{498.3}{0.75 \times 96}=6.92$ say 7 bolts
c) Shearing strength of bolts
$R_{n}=m F_{n v} A_{b}=2\left(330 * \frac{\pi 16^{2}}{4}\right) * 10^{-3}=132.7 \mathrm{kN}$
No. of bolts reqd. $=\frac{498.3}{0.75 \times 132.7}=5.006$ say 6 bolts
Due to 7 bolts are required we will put them in two lines with change in the section
Try L100x75x8 ($A=1336 \mathrm{~mm}^{2}, \mathrm{r}_{\mathrm{x}}=31.8 \mathrm{~mm}^{4}, \mathrm{r}_{\mathrm{y}}=22.2 \mathrm{~mm}, \mathrm{I}_{\mathrm{x}}=1348673 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=656123 \mathrm{~mm}^{4}$,
$\bar{x}=19.0 \mathrm{~mm}, \bar{y}=31.5 \mathrm{~mm})$
d) gross section yielding
$\Phi P_{n}=0.9 *(2 * 1336) * 248 * 10^{-3}=596.39 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
e) Tensile rupture strength
$A_{n}=(2 * 1336)-4^{*}(16+4) * 8=2032 \mathrm{~mm}^{2}$
$\mathrm{U}=1-\frac{\bar{x}}{L}=1-\frac{31.5}{3 \times 45}=\underline{0.767}$ or $\mathrm{U}=0.6$ table D-3.1 AISC Manual
$\mathrm{A}_{\mathrm{e}}=0.767 * 2032=1558.544 \mathrm{~mm}^{2}$
$\Phi P_{\mathrm{n}}=0.75 * 1558.544 * 400 * 10^{-3}=467.563 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section

Try 2Ls120×80x8 ($A=1550 \mathrm{~mm}^{2}, r_{x}=38.2 \mathrm{~mm}^{4}, r_{y}=22.8 \mathrm{~mm}, \mathrm{I}_{\mathrm{x}}=2257000 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=807600 \mathrm{~mm}^{4}$, $\bar{x}=18.7 \mathrm{~mm}, \bar{y}=38.3 \mathrm{~mm}$)
a) Tensile strength rupture
$A_{n}=(2 * 1550)-4(16+4)^{*} 8=2460 \mathrm{~mm}^{2}$
$\mathrm{U}=1-\frac{\bar{x}}{L}=1-\frac{38.3}{3 \times 45}=\underline{0.716}$ or $\mathrm{U}=0.6$ table D-3.1 AISC Manual
$\mathrm{A}_{\mathrm{e}}=0.716 * 2460=1762.09 \mathrm{~mm}^{2}$
$\Phi \mathrm{P}_{\mathrm{n}}=0.75 * 1762.09 * 400 * 10^{-3}=528.63 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
b) Block shear strength
$\mathrm{A}_{\mathrm{gv}}=4 * 8(2 * 45+25)=3840 \mathrm{~mm}^{2}$
$A_{n v}=4 * 8(120-2.5 * 20)=2240 \mathrm{~mm}^{2}$
$A_{n t}=2 * 8(45-20)=400 \mathrm{~mm}^{2}$
$R_{n}=0.6 A_{n v} F_{u}+U_{b s} A_{n t} F_{u} \leq 0.6 A_{g v} F_{y}+U_{s} A_{n t} F_{u}$
$=0.6 * 2240 * 400 * 10^{-3}+1.0 * 400 * 400 * 10^{-3} \leq 0.6 * 3840 * 248 * 10^{-3}+1.0 * 400 * 400 * 10^{-3}$
$=697.6<731.392$
$\emptyset \mathrm{R}_{\mathrm{n}}=0.75 * 697.6=523.3 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
c) Bearing strength of bolts
$R_{n}=1.2 \mathrm{Lct} \mathrm{Fu} \leq 2.4 \mathrm{dtF} \mathrm{C}_{\mathrm{u}}=6 * 1.2 * 25^{*} 2 * 8 * 400 * 10^{-3} \leq 6 * 2.4^{*} 16 * 2 * 8 * 400 * 10^{-3}=1152<1474.6$
$\emptyset R_{n}=864 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
d) Shearing strength of bolts
$R_{n}=m F_{n v} A_{b}=6 * 2\left(330 * \frac{\pi 16^{2}}{4}\right) * 10^{-3}=796.205 \mathrm{kN}$
$\emptyset R_{n}=0.75 * 796.205=597.15 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
\therefore Use 2Ls 120x80x8 for members No. (1, 2, 3, 4,22 , 23 , 24 , 25)

For members 5, 26
$\mathrm{Pu}=474.491 \mathrm{kN}$
Try 2Ls 100x75 8 ($\mathrm{A}=1336 \mathrm{~mm}^{2}, \mathrm{r}_{2}=16.2, \bar{x}=19.0, \bar{y}=31.5 \mathrm{~mm}$)
a) Gross section yielding
$\emptyset \mathrm{P}_{\mathrm{n}}=0.9 *\left(2^{*} 1336\right) * 248 * 10^{-3}=596.39 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
b) Tensile rupture strength
$A_{n}=2 * 1336-4 * 8 *(16+4)=2032 \mathrm{~mm}^{2}$
$\mathrm{U}=1-\frac{\bar{x}}{L}=1-\frac{31.5}{2 * 45}=0.65 \leftarrow, \mathrm{U}=0.6$ AISC-05 table D3-1 case 8
$A_{e}=U A_{n}=0.65 * 2032=1320.8 \mathrm{~mm}^{2}$
$\emptyset \mathrm{P}_{\mathrm{n}}=0.75 * 1320.8^{*} 400 * 10^{-3}=$
$396.24<\mathrm{P}_{\mathrm{u}}$ try with larger section Try 2Ls 100×75×10 ($\mathrm{A}=1650 \mathrm{~mm}^{2}$, $\bar{x}=19.8, \bar{y}=32.3 \mathrm{~mm})$
$A_{n}=2 * 1650-4 * 10 *(16+4)=2500$ mm^{2}
$U=1-\frac{\bar{x}}{L}=1-\frac{32.3}{2 * 45}=0.6422 \leftarrow, U=$ 0.6 AISC-05 table D3-1 case 8 $A_{e}=U A_{n}=0.6422^{*} 2500=$ $1605.56 \mathrm{~mm}^{2}$

(ROOF TRUSS) Structural Steel Project
$\emptyset \mathrm{P}_{\mathrm{n}}=0.75 * 1605.56 * 400 * 10^{-3}=481.67>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
(Note)
Block shear, shearing strength of bolts and bearing strength of bolts are adequate compering with previous section.
\therefore Use 2Ls 100x75x10 for members No. $(5,26)$

Design of the upper chord members
$\mathrm{P}_{\mathrm{u}}=508.6 \mathrm{kN}, \mathrm{L}=2.814 \mathrm{~m}$
Assume $\frac{K l}{r}=50<4.71 \sqrt{\frac{E}{F_{y}}}$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{50^{2}}=789.568 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y}$
$F_{\mathrm{cr}}=\left(0.658^{\frac{248}{789.568}}\right) 248=217.45 \mathrm{MPS}$
$\mathrm{P}_{\mathrm{u}}=\mathrm{F}_{\mathrm{cr}} \mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}=\frac{P_{u}}{\emptyset F_{c r}}=\frac{508.6 \times 10^{3}}{0.9 \times 217.45}=2599 \mathrm{~mm}^{2}$
Try 2Ls100x75x8 BBLL for each angle ($A=1336 \mathrm{~mm}^{2}, r_{2}=16.2 \mathrm{~mm}, r_{x}=31.8 \mathrm{~mm}, r_{y}=22.2 \mathrm{~mm}, \mathrm{I}_{\mathrm{x}}$ $=1348673 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=656123 \mathrm{~mm}^{4}, \bar{x}=19.0$)
$\mathrm{I}_{\mathrm{x}}=2^{*} 1348673=2697346 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=2\left(656123+1336(19.0+5)^{2}=2851318 \mathrm{~mm}^{4}\right.$
$r_{y}=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{2697346}{2 \times 1336}}=31.77 \mathrm{~mm}, r_{y}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{2851318}{2 \times 1336}}=32.67 \mathrm{~mm}$
$\left(\frac{K_{l}}{r_{x}}\right)=\frac{2814}{31.77}=\underline{88.574},\left(\frac{K_{l}}{r_{y}}\right)=\frac{2814}{32.67}=86.134$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\left(\frac{K_{l}}{r_{x}}\right)<4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{88.574^{2}}=251.6038 \mathrm{MPS}$
$\rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{251.6038}}\right) 248=164.165 \mathrm{MPs}$
$\emptyset \mathrm{P}_{\mathrm{n}}=0.9 * 164.165^{*}\left(2^{*} 1336\right)^{*} 10^{-3}=394.78$

$\mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try 2Ls120x80x8 BBLL for each angle ($A=1550 \mathrm{~mm}^{2}, r_{\mathrm{r}}=17.3 \mathrm{~mm}, \bar{x}=18.7, \mathrm{r}_{\mathrm{x}}=38.2 \mathrm{~mm}$, $r_{y}=22.8 \mathrm{~mm}, \mathrm{I}_{\mathrm{x}}=2257000 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=807600 \mathrm{~mm}^{4}$)
$I_{x}=2 * 2257000=4514000 \mathrm{~mm}^{4}, I_{y}=2\left(807600+1550(18.7+5)^{2}=3356435 \mathrm{~mm}^{4}\right.$
$r_{y}=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{4514000}{2 \times 1550}}=38.159 \mathrm{~mm}, r_{y}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{3356435}{2 \times 1550}}=32.905 \mathrm{~mm}$
$\left(\frac{K_{l}}{r_{x}}\right)=\frac{2814}{38.159}=73.744,\left(\frac{K_{l}}{r_{y}}\right)=\frac{2814}{32.905}=\underline{85.52}$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\left(\frac{K_{l}}{r_{x}}\right)<4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F e}}\right) F_{y}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{85.52^{2}}=269.894 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{269.894}}\right) 248=168.82 \mathrm{MPs}$
$\emptyset \mathrm{P}_{\mathrm{n}}=0.9 * 168.82^{*}(2 * 1550) * 10^{-3}=471.01 \mathrm{kN}<\mathrm{P}_{\mathrm{u}}$ not OK try larger section
Try 2Ls120×80×10 BBLL for each angle ($\mathrm{A}=1910 \mathrm{~mm}^{2}, \bar{x}=20.3, \mathrm{I}_{\mathrm{x}}=3228000 \mathrm{~mm}^{4}$,
$I_{y}=1143000 \mathrm{~mm}^{4}$)
$\mathrm{I}_{\mathrm{x}}=2 * 3228000=6456000 \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=2\left(1143000+1910(20.3+5)^{2}=4731143.8 \mathrm{~mm}^{4}\right.$
$\mathrm{r}_{\mathrm{y}}=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{6456000}{2 \times 1910}}=41.11 \mathrm{~mm}, \mathrm{r}_{\mathrm{y}}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{4731143.8}{2 \times 1910}}=35.193 \mathrm{~mm}$
$\left(\frac{K_{l}}{r_{x}}\right)=\frac{2814}{41.11}=68.45,\left(\frac{K_{l}}{r_{y}}\right)=\frac{2814}{32.905}=\underline{79.960}$
$4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{200000}{248}}=133.755$
$\left(\frac{K_{l}}{r_{x}}\right)<4.71 \sqrt{\frac{E}{F_{y}}} \rightarrow \mathrm{~F}_{\mathrm{cr}}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y}$
$\mathrm{F}_{\mathrm{e}}=\frac{\pi^{2} E}{\left(\frac{K l}{r}\right)^{2}}=\frac{\pi^{2} * 200000}{79.960^{2}}=308.7339 \mathrm{MPs} \rightarrow \mathrm{F}_{\mathrm{cr}}=\left(0.658^{\frac{248}{308.7339}}\right) 248=177.189 \mathrm{MPs}$
$\varnothing \mathrm{P}_{\mathrm{n}}=0.9 * 177.189^{*}(2 * 1910)^{*} 10^{-3}=609.17 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
\therefore Use 2Ls 120x80x10 for members No. (6, 7, 8, 9, 10, 27, 28, 29, 30, 31)

For reversal members 6, 27

Tension force in the reversal members is too small therefore 2 Ls $120 \times 80 \times 10$ are adequate.

Checking estimated weight of roof truss

Hear we will calculate actual internal force due to the weight of the roof truss using STAAD Pro. Then we will compare it with the internal force due to the estimated load as shown hear in table 8.

Table (8)

member	Actual values		Used values	
	+ve Max Force (kN)	-ve Max Force (kN)	+ve Max Force (kN)	-ve Max Force (kN)
$\mathbf{1}$	280.31	40.38	284.69	43.66
$\mathbf{2}$	280.31	40.38	284.69	43.66
$\mathbf{3}$	490.18	71.32	498.19	77.33

(ROOF TRUSS) Structural Steel Project

4	490.18	71.32	498.19	77.33
5	466.72	67.46	474.49	73.29
6	2.05	-2.72	2.14	-2.64
7	-63.61	-429.11	-68.67	-435.86
8	-63.40	-429.11	-68.46	-435.86
9	-74.53	-500.40	-80.62	-508.52
10	-74.31	-500.40	-80.40	-508.52
11	-2.15	-18.06	-2.83	-18.97
12	1.04	0.67	0.00	0.00
13	-4.68	-36.11	-6.06	-37.95
14	1.07	0.69	0.00	0.00
15	-4.73	-36.17	-6.06	-37.95
16	1.17	0.75	0.00	0.00
17	-49.03	-327.15	-52.61	-331.92
18	171.03	25.35	173.86	27.48
19	-11.99	-81.19	-12.93	-82.44
20	9.94	1.28	10.15	1.44
21	44.17	6.34	44.73	6.76
22	280.31	38.07	284.87	41.49
23	280.31	38.07	284.87	41.49
24	490.18	70.46	498.25	76.52
25	490.18	70.46	498.25	76.52
26	466.72	67.46	474.49	73.29
27	2.05	-2.72	1.93	-2.84
28	-63.61	-429.11	-68.75	-435.97
29	-63.40	-429.11	-68.54	-435.97
30	-74.53	-500.40	-80.64	-508.55
31	-74.31	-500.40	-80.43	-508.55
32	-2.15	-18.06	-2.85	-18.99
33	1.04	0.67	0.00	0.00
34	-4.68	-36.11	-6.06	-37.95
35	1.07	0.69	0.00	0.00
36	-4.73	-36.17	-6.06	-37.95
37	-49.03	-327.15	-52.53	-331.82
38	171.03	25.35	173.79	27.43
39	-11.99	-81.19	-12.89	-82.38
40	9.94	1.28	10.10	1.40
41	44.17	6.34	44.77	6.79

The table show that our estimate of the roof truss weight is good with no problems.

DESIGN OF THE CONNECTIONS

Bolted connections

L_{10}

Member 32, compression - 19 kN , L50x50x6
a) bearing strength
$\mathrm{L}_{\mathrm{c}}=45-(16+4)=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F}_{\mathrm{u}} \rightarrow 1.2 * 25^{*} 6^{*} 400 * 10^{-3} \leq 2.4^{*} 16^{*} 6^{*} 400 * 10^{-3} \rightarrow 72<92.16$
No. of bolts $=\frac{P_{u}}{\emptyset R_{n}}=\frac{19}{0.75 \times 72}=0.35 \rightarrow$ say 2 bolts as a minimum fastener
b) shearing strength of 2 bolts
$\emptyset R_{n}=0.75 * F_{n v} A_{b}=2 * 0.75 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=99.5 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
\therefore Use tow bolts 16 mm in diameter.
L_{10}
Member 37, compression - 331.8 kN , L150×150×12
a) bearing strength of one bolt
$\mathrm{L}_{\mathrm{c}}=45-(16+4)=25 \mathrm{~mm}$
$R_{n}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F} \mathrm{F}_{\mathrm{u}} \rightarrow 1.2^{*} 25^{*} 12^{*} 400 * 10^{-3} \leq 2.4^{*} 16^{*} 12 * 400^{*} 10^{-3} \rightarrow 144<184.32$
No. of bolts $=\frac{P_{u}}{\phi R_{n}}=\frac{331.8}{0.75 \times 144}=3.07 \rightarrow$ say 4 bolts.
b) shearing strength of 4 bolts
$\emptyset \mathrm{R}_{\mathrm{n}}=0.75 * \mathrm{~F}_{\mathrm{nv}} \mathrm{A}_{\mathrm{b}}=4 * 0.75 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=199.05 \mathrm{kN}<\mathrm{P}_{\mathrm{u}} \rightarrow$ increase the bolts.
No. of bolts reqd. $=\frac{331.8 \times 10^{3}}{0.75 \times 330 \times \frac{\pi \times 11^{2}}{4}}=6.67 \rightarrow$ say 7 bolts in two lines.
L_{10}
Member 22, tension 284.9 kN , 2Ls $120 \times 80 \times 8$
a) bearing strength of one bolt
$L_{c}=45-(16+4)=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F} \mathrm{F}_{\mathrm{u}} \rightarrow 1.2 * 25 * 8^{*} 400^{*} 10^{-3} \leq 2.4 * 16^{*} 8^{*} 400 * 10^{-3} \rightarrow 96<122.88$
No. of bolts $=\frac{P_{u}}{\phi R_{n}}=\frac{284.9}{0.75 \times 96}=3.96 \rightarrow$ say 4 bolts
b) shearing strength of 4 bolts
$\emptyset R_{n}=0.75 * F_{n v} A_{b}=2 * 4 * 0.75 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=398.1 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$
\therefore Use four bolts 16 mm in diameter.

U_{10}

Member 27, reversal +1.93 kN and $-2.835 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 10$
The same with member 32
\therefore Use two bolts 16 mm in diameter.

L_{9}

Member 23, tension +285 kN, 2Ls120x80x8
The same with member 22
\therefore Use four bolts 16 mm in diameter.

$\left\llcorner_{9}\right.$

Member 33, zero member 0 kN, L50x50x6

The same with member 32
\therefore Use two bolts 16 mm in diameter.

U_{9}

Member 38, tension $+173.8 \mathrm{kN}, \mathrm{L} 60 \times 60 \times 8$
\therefore Use three bolts 16 mm in diameter (page \#\#).

U_{9}

Member 28, comp. $-436 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 10$
a) bearing strength of one bolt
$\mathrm{L}_{\mathrm{c}}=45-(16+4)=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F} \mathrm{F}_{\mathrm{u}} \rightarrow 1.2 * 25^{*} 10 * 400^{*} 10^{-3} \leq 2.4^{*} 16^{*} 10^{*} 400^{*} 10^{-3} \rightarrow 120<153.6$
No. of bolts $=\frac{P_{u}}{\emptyset R_{n}}=\frac{436}{0.75 \times 120}=4.84 \rightarrow$ say 5 bolts
b) shearing strength of 5 bolts
$\varnothing \mathrm{R}_{\mathrm{n}}=0.75 * \mathrm{~F}_{\mathrm{nv}} \mathrm{A}_{\mathrm{b}}=2 * 5 * 0.75 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=497.6 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
\therefore Use five bolts 16 mm in diameter.

L_{8}

Member 34, comp. -38.9 kN, L60x60x6
a) bearing strength of one bolt
$\mathrm{L}_{\mathrm{c}}=45-(16+4)=25 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{t} \mathrm{F}_{\mathrm{u}} \leq 2.4 \mathrm{dt} \mathrm{F}_{\mathrm{u}} \rightarrow 1.2^{*} 25^{*} 6^{*} 400 * 10^{-3} \leq 2.4^{*} 16^{*} 6^{*} 400^{*} 10^{-3} \rightarrow 72<92.16$
No. of bolts $=\frac{P_{u}}{\phi R_{n}}=\frac{38.9}{0.75 \times 72}=0.72 \rightarrow$ use 2 bolts
b) shearing strength of 2 bolts
$\emptyset R_{\mathrm{n}}=99.5 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
\therefore Use two bolts 16 mm in diameter.

L_{8}

Member 39, comp. $-82.4 \mathrm{kN}, \mathrm{L} 100 \times 100 \times 10$
\therefore Use 2 bolts 16 mm in diameter which adequate comparing with member 34 .

U_{9}

Member 24, tension +498.3 kN, 2Ls120x80x8
\therefore Use 6 bolts 16 mm in diameter (page \#\#).
U_{8}
Member 29, comp. -436kN, 2Ls120x80x10
a) bearing strength of one bolt

No. of bolts $=\frac{P_{u}}{\emptyset R_{n}}=\frac{436}{0.75 \times 120}=4.84 \rightarrow$ say 5 bolts
b) shearing strength of 5 bolts
$\emptyset R_{\mathrm{n}}=497.6 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
\therefore Use 5 bolts 16 mm in diameter.
L
Member 35, zero member 0 kN, L50x50x6

The same with member 32
\therefore Use 2 bolts 16 mm in diameter.

L_{7}

Member 25 , tension $+498.3 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 8$
\therefore Use 6 bolts 16 mm in diameter (page \#\#).
U_{7}
Member 40, tension +10.102 kN , L65x65x7
\therefore Use 2 bolts 16 mm in diameter (page \#\#).

U_{7}

Member 30, comp. -508.55kN, 2Ls120×80x10
a) bearing strength of one bolt

No. of bolts $=\frac{P_{u}}{\phi R_{n}}=\frac{508.55}{0.75 \times 120}=5.65 \rightarrow$ say 6 bolts
b) shearing strength of 6 bolts
$\emptyset \mathrm{R}_{\mathrm{n}}=0.75 * 2 * 6 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=597.1 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
\therefore Use 6 bolts 16 mm in diameter.

L_{6}

Member 36, comp. -37.95 kN, L65x65x7
\therefore Use 2 bolts 16 mm in diameter which adequate comparing with member 34 .

L_{6}

Member 41, tension 44.8 kN, L70x70x6
\therefore Use 2 bolts 16 mm in diameter (page \#\#).

L

Member 26, tension $474.5 \mathrm{kN}, 2 \mathrm{Ls} 100 \times 75 \times 10$
a) bearing strength of one bolt

No. of bolts $=\frac{P_{u}}{\emptyset R_{n}}=\frac{474.5}{0.75 \times 120}=5.65 \rightarrow$ say 6 bolts
b) shearing strength of 6 bolts
$\emptyset \mathrm{R}_{\mathrm{n}}=0.75 * 2 * 6 * 330 * \frac{\pi 16^{2}}{4} * 10^{-3}=597.1 \mathrm{kN}>\mathrm{P}_{\mathrm{u}}$ OK
\therefore Use 6 bolts 16 mm in diameter.

U_{6}

Member 31, comp. -508.55 kN, 2Ls120×80x10
\therefore Use 6 bolts 16 mm in diameter the same with member 30 .

Gusset plate for bolted connections

As we can see all thicknesses of the members are equal or less than 10 mm (gusset plate thickness) except member 37 has 12 mm thickness but shearing strength of bolts is controls and 7 bolts are adequate. Then we will use 10 mm thickness of the gusset plate.

Table (9) summary to bolted connections

Joint	member	section	type	force	No. of bolts
\mathbf{L}_{10}	32	L50x50x6	comp.	-19	2
	37	L150x150x12	comp.	-331.8	7
	22	2Ls120×80x8	Tens.	285	4
U_{10}	27	2Ls120x80x10	reversal	$\begin{aligned} & +1.9 \\ & -2.8 \end{aligned}$	2
L,	23	2Ls120x80x8	Tens.	285	4
	33	L50x50x6	zero	0	2
\mathbf{U}_{9}	38	L60x60x8	Tens.	173.8	3
	28	2Ls120×80×10	comp.	436	5
\mathbf{L}_{8}	34	L60x60x6	comp.	-38	2
	39	L100x100x10	comp.	-82.4	2
	24	2Ls120x80x8	Tens.	498.3	6
U_{8}	29	2Ls120x80x10	comp.	-463	5
\mathbf{L}_{7}	35	L50x50x6	zero	0	2
	25	2Ls120x80x8	Tens.	498.3	6
\mathbf{U}_{7}	40	L65x65x7	Tens.	10.102	2
	30	2Ls120×80×10	comp.	-508.3	6
\mathbf{L}_{6}	36	L65x65x7	comp.	-37.95	2
	41	L70x70x6	Tens.	44.8	2
	26	2Ls100×75×10	Tens.	474.5	6
U_{6}	31	2Ls120x80x10	comp.	-508.55	6

Welded connections

We will use 70EXX (it's strength 483MPs)
\square_{0}
Member 11, compression $-19 \mathrm{kN}, \mathrm{L} 50 \times 50 \times 6, \bar{x}=14.5 \mathrm{~mm}$
Maximum weld size $=6 \mathrm{~mm}$, minimum weld size $=3 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 4 mm
$\emptyset R_{n}=\varnothing F_{w} A_{w}$

$$
=0.75 * 0.6 * 483 *(4 * 0.707) * 1 * 10^{-3}=0.6147 \mathrm{kN} / \mathrm{mm}
$$

Total length of weld required $=\frac{18.97}{0.6147}=30.9 \mathrm{~mm}, \mathrm{~min}$. length $=4 \mathrm{t}=4^{*} 6=24 \mathrm{~mm}$

$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 18.97 * 14.4=50 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=5.5 \mathrm{kN} \rightarrow \mathrm{P}_{1}=18.97-5.5=13.47 \mathrm{kN}$
$\mathrm{L}_{1}=\frac{13.47}{0.6147}=21.9 \mathrm{~mm}$ say $30 \mathrm{~mm}\left(\frac{l}{w}=\frac{21.9}{4}=5.475<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{5.5}{0.6147}=8.9 \mathrm{~mm}$ say $10 \mathrm{~mm}\left(\frac{l}{w}=\frac{8.9}{4}=2.225<100 \rightarrow \beta=1.0\right)$

L_{0}

Member 1, tension $+284.7 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 8, \bar{x}=38.3 \mathrm{~mm}$
Maximum weld size $=(8-2)=6 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 6 mm
$\emptyset R_{n}=\varnothing F_{w} A_{w}$
$=0.75 * 0.6^{*} 483^{*}\left(6^{*} 0.707\right) * 1^{*} 10^{-3}=0.9220 \mathrm{kN} / \mathrm{mm}$

$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 284.7^{*} 38.3=120 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=90.9 \mathrm{kN} \rightarrow \mathrm{P}_{1}=284.7-90.9=193.8 \mathrm{kN}$
$\mathrm{L}_{1}=\frac{193.8}{0.922}=210.1 \mathrm{~mm}$ say $210 \mathrm{~mm}\left(\frac{l}{w}=\frac{210}{6}=35<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{90.9}{0.922}=98.6 \mathrm{~mm}$ say $100 \mathrm{~mm}\left(\frac{l}{w}=\frac{100}{6}=16.67<100 \rightarrow \beta=1.0\right)$

Lo

Member 17, compression -331.9 kN, L150x150×12, $\bar{x}=41.2 \mathrm{~mm}$
Maximum weld size $=(12-2)=10 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 10 mm
$\emptyset R_{n}=\varnothing F_{w} A_{w}$
$=0.75 * 0.6^{*} 483 *(10 * 0.707) * 1^{*} 10^{-3}=1.537 \mathrm{kN} / \mathrm{mm}$
$\Sigma \mathrm{M}_{\mathrm{P}_{1}}=0 \rightarrow 331.9 * 41.2=150 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=91.16 \mathrm{kN} \rightarrow \mathrm{P}_{1}=331.9-91.16=240.7 \mathrm{kN}$

$\mathrm{L}_{1}=\frac{240.7}{1.537}=156.7 \mathrm{~mm}$ say $160 \mathrm{~mm}\left(\frac{l}{w}=\frac{160}{10}=16<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{91.16}{1.537}=8.9 \mathrm{~mm}$ say $60 \mathrm{~mm}\left(\frac{l}{w}=\frac{60}{10}=6<100 \rightarrow \beta=1.0\right)$
U_{0}
Member 6, reversal +2.142 kN and $-2.640 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 10, \bar{x}=39.2 \mathrm{~mm}$
Maximum weld size $=(10-2)=8 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 5 mm
$\emptyset R_{n}=\varnothing F_{w} A_{w}$

$$
=0.75 * 0.6^{*} 483 *\left(5^{*} 0.707\right) * 1 * 10^{-3}=0.7683 \mathrm{kN} / \mathrm{mm}
$$

Total length of weld required $=\frac{2.64}{0.7683}=3.4 \mathrm{~mm}, \mathrm{~min}$. length $=4 \mathrm{t}=4 * 5=20 \mathrm{~mm}$
$\mathrm{L}_{1}=10 \mathrm{~mm}, \mathrm{~L}_{2}=10 \mathrm{~mm}$

L_{1}

Member 12, zero 0 kN, L50x50x6, $\bar{x}=14.5 \mathrm{~mm}$
Use minimum weld size, minimum weld size $=3 \mathrm{~mm}$ (AISC manual table J 2.4)
Min. length $=4 \mathrm{t}=4 * 3=12 \mathrm{~mm}$
$\mathrm{L}_{1}=10 \mathrm{~mm}, \mathrm{~L}_{2}=10 \mathrm{~mm}$

L_{1}

Member 2, tension $+284.7 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 8, \bar{x}=38.3 \mathrm{~mm}$ Use $L_{1}=10 \mathrm{~mm}, \mathrm{~L}_{2}=10 \mathrm{~mm}$ the same with member 1

U_{1}

Member 18, tension $+173.9 \mathrm{kN}, \mathrm{L} 60 \times 60 \times 8, \bar{x}=16.9 \mathrm{~mm}$
Maximum weld size $=6 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 6 mm
$\emptyset \mathrm{R}_{\mathrm{n}}=0.9220 \mathrm{kN} / \mathrm{mm}$

$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 173.9 * 16.9=60 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=48.98 \mathrm{kN} \rightarrow \mathrm{P}_{1}=173.9-48.98=124.92 \mathrm{kN}$
$\mathrm{L}_{1}=\frac{124.92}{0.922}=135.5 \mathrm{~mm}$ say $140 \mathrm{~mm}\left(\frac{l}{w}=\frac{140}{6}=23.33<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{48.98}{0.922}=53.1 \mathrm{~mm}$ say $60 \mathrm{~mm}\left(\frac{l}{w}=\frac{60}{6}=10<100 \rightarrow \beta=1.0\right)$
U_{1}
Member 7, compression -435.66 kN, 2Ls120x80x10, $\bar{x}=39.2 \mathrm{~mm}$
Maximum weld size $=(10-2)=8 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 8 mm
$\emptyset R_{n}=\varnothing F_{w} A_{w}$
$=0.75 * 0.6^{*} 483^{*}\left(8^{*} 0.707\right)^{*} 1^{*} 10^{-3}=1.229 \mathrm{kN} / \mathrm{mm}$
$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 39.2^{*} 435.86=120 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=142.38 \mathrm{kN} \rightarrow \mathrm{P}_{1}=435.86-142.38=293.48 \mathrm{kN}$

$\mathrm{L}_{1}=\frac{293.48}{1.229}=238.8 \mathrm{~mm}$ say $240 \mathrm{~mm}\left(\frac{l}{w}=\frac{240}{8}=30<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{142.38}{1.229}=115.9 \mathrm{~mm}$ say $120 \mathrm{~mm}\left(\frac{l}{w}=\frac{120}{8}=15<100 \rightarrow \beta=1.0\right)$

L_{2}

Member 19, compression -82.44 kN, L100x100x10, $\bar{x}=39.2 \mathrm{~mm}$
Maximum weld size $=(10-2)=8 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 6 mm
$\emptyset \mathrm{R}_{\mathrm{n}}=\varnothing \mathrm{F}_{\mathrm{w}} \mathrm{A}_{\mathrm{w}}=0.9220 \mathrm{kN} / \mathrm{mm}$
$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 82.44^{*} 28.2=100 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=23.25 \mathrm{kN} \rightarrow \mathrm{P}_{1}=59.19 \mathrm{kN}$

$\mathrm{L}_{1}=\frac{59.19}{0.922}=64.2 \mathrm{~mm}$ say $70 \mathrm{~mm}, \mathrm{~L}_{2}=\frac{23.25}{0.922}=25.2 \mathrm{~mm}$ say 30 mm
L_{2}
Member 13, compression -37.947 kN, L60x60x6, $\bar{x}=16.9 \mathrm{~mm}$
Try with 4 mm
$\emptyset \mathrm{R}_{\mathrm{n}}=\emptyset \mathrm{F}_{\mathrm{w}} \mathrm{A}_{\mathrm{w}}=0.6147 \mathrm{kN} / \mathrm{mm}$
$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 37.947 * 16.9=60 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=10.69 \mathrm{kN} \rightarrow \mathrm{P}_{1}=27.26 \mathrm{kN}$

$\mathrm{L}_{1}=\frac{27.26}{0.6147}=44.35 \mathrm{~mm}$ say $50 \mathrm{~mm}, \mathrm{~L}_{2}=\frac{10.69}{0.6147}=17.8 \mathrm{~mm}$ say 20 mm
L_{2}
Member 3, tension $+498.19 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 8, \bar{x}=38.3 \mathrm{~mm}$
Maximum weld size $=6 \mathrm{~mm}$, minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
Try with 6 mm
$\emptyset \mathrm{R}_{\mathrm{n}}=0.9220 \mathrm{kN} / \mathrm{mm}$

$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 498.19 * 38.3=120 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=159 \mathrm{kN} \rightarrow \mathrm{P}_{1}=339.18 \mathrm{kN}$
$\mathrm{L}_{1}=\frac{339.18}{0.922}=367.9 \mathrm{~mm}$ say $370 \mathrm{~mm}\left(\frac{l}{w}=\frac{370}{6}=61.67<100 \rightarrow \beta=1.0\right)$
$\mathrm{L}_{2}=\frac{159}{0.922}=172.5 \mathrm{~mm}$ say $180 \mathrm{~mm}\left(\frac{l}{w}=\frac{180}{6}=30<100 \rightarrow \beta=1.0\right)$
U_{2}
Member 8, $L_{1}=120 \mathrm{~mm}, L_{2}=240 \mathrm{~mm}$ the same with member 7

L_{3}

Member 4, $L_{1}=50 \mathrm{~mm}, L_{2}=20 \mathrm{~mm}$ the same with member 3
L_{3}
Member 14, $L_{1}=10 \mathrm{~mm}, L_{2}=10 \mathrm{~mm}$ the same with member 12

U_{3}

Member 20, tension $+10.15 \mathrm{kN}, \mathrm{L} 65 \times 65 \times 7, \bar{x}=18.5 \mathrm{~mm}$

Using minimum weld size $=5 \mathrm{~mm}$ (AISC manual table J 2.4)
$\emptyset R_{n}=0.7683 \mathrm{kN} / \mathrm{mm}$

Total length $=\frac{10.15}{0.7683}=13.21 \mathrm{~mm}$, minimum length of weld $=4 \mathrm{w}=4 * 5=20 \mathrm{~mm} \leftarrow$
$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 20 * 18.5=65 \mathrm{~L}_{2} \rightarrow \mathrm{~L}_{2}=5.7 \mathrm{~mm}$ say 10 mm
$\mathrm{L}_{1}=20-5.7=14.3 \mathrm{~mm}$, say 20 mm
U_{3}
Member 9, compression - $508.5 \mathrm{kN}, 2 \mathrm{Ls} 120 \times 80 \times 10, \bar{y}=39.2 \mathrm{~mm}$
Use maximum weld size $10-2=8 \mathrm{~mm}$
$\emptyset R_{n}=\emptyset F_{w} A_{w}=1.229 \mathrm{kN} / \mathrm{mm}$

$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 508.5^{*} 39.2=120 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=166.11 \mathrm{kN} \rightarrow \mathrm{P}_{1}=342.39 \mathrm{kN}$
$\mathrm{L}_{1}=\frac{342.39}{1.229}=278.6 \mathrm{~mm}$ say $280 \mathrm{~mm}, \mathrm{~L}_{2}=\frac{166.11}{1.229}=135.2 \mathrm{~mm}$ say 140 mm

L_{4}

Member 15, compression -37.95 kN, L70x70x6, $\bar{x}=19.3 \mathrm{~mm}$
Try with 3 mm (AISC manual table J 2.4)
$\emptyset \mathrm{R}_{\mathrm{n}}=\varnothing \mathrm{F}_{\mathrm{w}} \mathrm{A}_{\mathrm{w}}=0.75 * 0.6 * 483^{*} 3^{*} 0.707 * 10^{-3}=0.4610 \mathrm{kN} / \mathrm{mm}$
$\Sigma \mathrm{M}_{\mathrm{P} 1}=0 \rightarrow 37.95 * 19.3=70 \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}=10.46 \mathrm{kN} \rightarrow \mathrm{P}_{1}=27.49 \mathrm{kN}$

$L_{1}=\frac{27.49}{0.4610}=59.6 \mathrm{~mm}$ say $60 \mathrm{~mm}, \mathrm{~L}_{2}=\frac{10.46}{0.4610}=22.7 \mathrm{~mm}$ say 30 mm

Note

Members 5, 21 and 10 prefer to use bolted connection for erection purpose the same with members 26, 41, and 31 respectively.

Table (10) summery to welded connections

Joint	Member	Section	w (mm)	$\mathrm{L}_{1}(\mathrm{~mm})$	$\mathbf{L}_{2}(\mathbf{m m})$
\mathbf{L}_{0}	11	L50x50x6	4	30	10
	1	2Ls120x80x8	6	210	100
	17	L150x150x12	10	160	60
U_{0}	6	2Ls120×80×10	5	10	10
L_{1}	12	L50x50x6	3	10	10
	2	2Ls120x80x8	6	210	100
U_{1}	18	L60x60x8	6	140	60
	7	2Ls120×80×10	8	240	120
\mathbf{L}_{2}	19	L100x100x10	6	70	30
	13	L60x60x6	4	50	20
	3	2Ls120x80x8	6	370	180
\mathbf{U}_{2}	8	2Ls120x80x10	8	240	120
\mathbf{L}_{3}	4	2Ls120x80x8	6	370	180
	14	L50x50x6	3	10	10
\mathbf{U}_{3}	20	L65x65x7	5	20	10
	9	2Ls120×80×10	8	280	140
L_{4}	15	L70x70x6	3	60	30

As we were drawing we noted that, some members can't install like members 17 and 19. Then we will recalculate their lengths as shown hear.

Lo

Member 17, w = 10 mm
160 mm length provide $0.75 * 0.6 * 483 * 10 * 0.707 * 160 * 10^{-3}=245.87 \mathrm{kN}$

$$
\Rightarrow P_{2}=331.9-245.87=86.03 \mathrm{kN}
$$

The resistance provided by 1 mm length in the transverse direction equal

$$
\begin{aligned}
& =0.75^{*} 0.6^{*} 483^{*}\left(1.0+0.5 \sin ^{1.5} 90^{\circ}\right) *\left(10^{*} 0.707\right) * 1^{*} 10^{-3} \\
& =2.305 \mathrm{kN} / \mathrm{mm}
\end{aligned}
$$

Reqd. length $=\frac{86.03}{2.305}=37.32 \mathrm{~mm}$ say 40 mm
Check $R_{u}=R_{w l}+R_{w t}$ or $R_{u}=0.85 R_{w l}+1.5 R_{w t}$

$$
\begin{aligned}
& =1.537 * 160+2.305 * 40=338.12 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK} \\
& =0.85(1.537 * 160)+1.5(2.305 * 40)=347.33 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}
\end{aligned}
$$

Use 40 mm transverse weld

L_{2}

Member 19
$\mathrm{L}=70 \mathrm{~mm} \rightarrow \emptyset \mathrm{R}_{\mathrm{n}}=0.922^{*} 70=64.54 \mathrm{kN}$
The resistance provided by 1 mm length in the transverse direction equal

$$
\begin{aligned}
& =0.75 * 0.6^{*} 483 *\left(1.0+0.5 \sin ^{1.5} 90^{\circ}\right) *(10 * 0.707) * 1 * 10^{-3} \\
& =1.383 \mathrm{kN} / \mathrm{mm}
\end{aligned}
$$

Reqd. length $=\frac{82.44-64.54}{1.383}=12.9 \mathrm{~mm}$ say 20 mm
Check $R_{u}=R_{w l}+R_{w t}$ or $R_{u}=0.85 R_{w l}+1.5 R_{w t}$

$$
=0.922 * 70+1.383 * 20=92.2 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}
$$

$=0.85(0.922 * 70)+1.5(1.383 * 20)=96.35 \mathrm{kN}>\mathrm{P}_{\mathrm{u}} \mathrm{OK}$
Use 20 mm transverse weld

Drawing of the connections

The drawings are show in figure 17 as a sample for bolted connections, a sample for gusset plates in figure 18 and a sample for welded connections in figure 19. All the connections and their gusset plates are presented in PDF file also in JPEG and PNG format with the project.

Fig. (17) bolted connection L_{8}

Fig. (18) Gusset plate for L_{6}

Fig. (19) Welded connection U_{3}

The bracing system of the building

As we assumed the building doesn't use with vibration loading then we can use bracing in the upper chord only every four pays as shown in figures 2 and 3.

References

1. STRUCTURAL STEEL DESIGN, Fourth Edition, Jack C. mccormac.
2. STEEL CONSTRUCTION MANUAL Thirteenth edition.
3. STRUCTURAL STEEL DESIGN, Second Edition, Jack C. mccormac chapter 17.
4. ASCE 7-05 Minimum Design Loads for buildings and other Structures.
5. Guide to the Use of the Wind Load Provisions of ASCE 7-02.
6. Structural steelwork design to limit state theory Second Edition.
7. AISC design examples.

Contents

The project 0
Calculation of loads acting on an internal truss 4
Live load 4
Snow load 4
Estimating Dead load 4
Analysis of the truss using Joints method due to unit load 4
Calculation of Wind Load 9
Design of Purlins 16
Live Load 16
Snow Load 16
Roofing Load 16
Wind Load 16
Load Combinations 16
Design of Sag Rod 18
Design of members 23
Zero members 23
Design of compression web members 26
Design of Chord members 29
Design of lower chord 29
Design of the upper chord members 32
Checking estimated weight of roof truss 33
DESIGN OF THE CONNECTIONS 35
Bolted connections 35
Gusset plate for bolted connections 37
Welded connections 38
Drawing of the connections 44
The bracing system of the building 46
References 46

