

 التجارب العملية

Programming

Embedded Systems Microcontroller

You Can Practice Microcontroller Programming Easily Now!

WALID BALID, Tuesday, December 15, 2009

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 241 Automatic Control & Automation Dept.

EEPROM Exp.30: Programming Internal EEPROM

EEPROM

 242

UART1

RS232
EEPROM.

 | |

overlay

Dim Var As [xram|Sram|Eram]
Type [at Location][overlay]

Examples:
Dim Sram_var As Sram Byte At &H10
Dim Eprm_var As Eram Byte At &H80

VarEEPROMAddress Writeeeprom Var , Address

VarEEPROMLabel Writeeeprom Var , Label

VarEEPROMAddress Readeeprom Var , Address

VarEEPROMLabel Readeeprom Var , Label

 DATA
EEPROMEPP

$eeprom

 $data
EPPIntel HEX
$eeprom $eepromhex

EPPEEPROM $eepleave

$default

$default Sram | Xram | Eram

Examples:
$default Sram
Dim A As Byte , B As Byte

$default Eram
Dim C As Byte , D As Byte

 $end $default
SRAM $noramclear

 $romstart = address

AVREEPROM

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 243 Automatic Control & Automation Dept.

)1(

 $regfile = "m128def.dat"
$crystal = 4000000
$baud = 9600
'------------------
Dim B As Byte , I As Byte
Dim W As Word , S As String * 5

Dim Eb As Eram Byte At 13
Dim Ei As Eram Integer At 14
Dim El As Eram Long At 16
Dim Es As Eram String * 5 At 20
'------------------
Do
 S = "ABCDE" : Es = S
 S = ""
 S = Es : Print S

 B = 10 : Eb = B
 B = 0
 B = Eb : Print B
'/------

 For I = 0 To 4
 Readeeprom B , I
 Print B
 Next I
'/------

 S = "abcde" : W = 10000
 Writeeeprom S , 5
 Writeeeprom W , 11

 S = "" : W = 0
 Readeeprom S , 5 : Print S
 Readeeprom W , 11 : Print W
'/------

 Restore Lbl
 Read B : Print B
 Read B : Print B
Loop
End
'------------------

Lbl:
Data 10 , 12
'------------------

$eeprom
 Data 1 , 2 , 3 , 4 , 5
$data

SRAM

EEPROM

 SRAM
EEPROM.

EPROMSRAM

 SRAM
EEPROM

EPROMSRAM

SRAM
ROM

ROM

EEPROM

 244

)2(

$regfile = "m128def.dat"
$crystal = 4000000
$baud = 9600
$eepromhex
$eepleave
'------------------
Dim Var As Sram Byte At &H200
'------------------
$eeprom
 Label1:
 Data 1 , 2 , 3 , 4 , 5

 Label2:
 Data 10 , 20 , 30 , 40 , 50
$data
'------------------
 Readeeprom Var , Label1
 Print Var
 Readeeprom Var
 Print Var
'/------

 Readeeprom Var , Label2
 Print Var
 Readeeprom Var
 Print Var
'/------

 Var = 100
 Writeeeprom Var , Label1
 Var = 101
 Writeeeprom Var

 Readeeprom Var , Label1
 Print Var
 Readeeprom Var
 Print Var
'/------

 Var = 0
 Writeeeprom Var , 3
 Readeeprom Var , 3
 Print Var
End

 EEPROM

EPROMSRAM

EPROMSRAM

 SRAM
EEPROM

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 245 Automatic Control & Automation Dept.

I2C Exp.31: Interfacing with I2C

 I2C EEPROM

 RTC.

 246

I2C

I2CInter-Integrated Circuit1980Philips
TV

TWITwo Wire Interface

I2C SDA, SCK
SDA

SCK One-Master<>Multi-Slaves
Multi-Master<>Multi-Slaves

 Chip-to-Chip
Multi-Drop BusMasterMulti-Slave

Master<>Slave
Multi-Master Multi-Slave

I2COpen collectorSDA, SCK
“1”

I²CUnique Address7-Bit112 nodes
10-bit1008 nodes

400pF10pF

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 247 Automatic Control & Automation Dept.

I2C

Disadvantages Advantages
×)3meter(.

× 400Khz

×

ü Slave

ü

ü

ü

 248

Interfacing I2C EEPROM

Description:

I²C is an abbreviation of Inter Integrated Circuit and is a protocol for serial communication between
Integrated Circuits, it is also called Two Wire Interface (TWI). The bus is used for communication
between microcontrollers and peripheral devices like memories, temperature sensors and I/O
expanders. An EEPROM is a Electrically Erasable and Programmable Read Only Memory.

EEPROM Model Size Internally Organized Address (hex)
AT24C01 128 Bytes 128 x 8 = 1024 bits 00000 >> 0007F
AT24C02 256 Bytes 256 x 8 = 2048 bits 00000 >> 000FF
AT24C04 512 Bytes 512 x 8 = 4096 bits 00000 >> 001FF
AT24C08 1 Kbyte 1024 x 8 = 8192 bits 00000 >> 003FF
AT24C16 2 Kbyte 2048 x 8 = 16384 bits 00000 >> 007FF
AT24C32 4 Kbyte 4096 x 8 = 32768 bits 00000 >> 00FFF
AT24C64 8 Kbyte 8192 x 8 = 65536 bits 00000 >> 01FFF
AT24C128 16 Kbyte 16384 x 8 = 131072 bits 00000 >> 03FFF
AT24C256 32 Kbyte 32768 x 8 = 262144 bits 00000 >> 07FFF
AT24C512 64 Kbyte 65536 x 8 = 524288 bits 00000 >> 0FFFF
AT24C1024 128 Kbyte 131072 x 8 = 1048576 bits 00000 >> 1FFFF

The communication of the bus goes along two lines: SDA (Serial Data) and SCL (Serial Clock). Each I²C
device has a unique 7-bit address (Device Select Code). The most significant bits are fixed and
assigned to a specific device category (e.g. b1010 is assigned to serial EEPROMS). The three less
significant bits (A2,A1 and A0) are programmable and used to address the device. The three bits
allows eight different I2C address combinations and therefore allowing up to eight different devices of
that type to operate on the same I2C-bus. The I2C address is send in the 1st byte, the lest signi icant bit
of the first byte is used to indicate if the master is going to write(0) or read(1) from the slave.

The device that sends data along the bus is called master, a device that receives the data is called
slave. The master starts the transmission with a start signal and stops the transmission with a stop
signal on the SDA line. During the start and stop signals the SCL line has to be high. After the master
has started the data-transmission with a start signal, the master writes a device address byte to the

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 249 Automatic Control & Automation Dept.

slave. Each data byte has to have a length of 8 bits. The slave has to acknowledge the reception of the
data byte with a acknowledge-bit (ACK).

A write operation requires a device address bytes, two address bytes and the data-byte. Upon receive
of the address the EEPROM sends an ACK and then clocks in the data-byte. The EEPROM sends again
an ACK and the microcontrollers sends a stop-signal to terminate the write sequence.

All devices from 32K – 512K will require no system changes and can be interchanged with only the
page size differences to consider.

Low Density Random Read:

 250

Medium and High Density Random Read:

AT24C32 (4 Kbyte)
4096 * 8 = 32768 bits 0000 >> 0FFF 32 byte page

&H0000 Saturday [128 Set]
128 x 4 = 215 Bytes

512Bytes

&H01FF
&H0200 Sunday [128 Set]

128 x 4 = 215 Bytes

512Bytes
&H03FF

&H0400 Monday [128 Set]
128 x 4 = 215 Bytes

512Bytes

&H05FF
&H0600 Tuesday [128 Set]

128 x 4 = 215 Bytes

512Bytes
&H07FF

&H0800 Wednesday [128 Set]
128 x 4 = 215 Bytes

512Bytes

&H09FF
&H0A00 Thursday [128 Set]

128 x 4 = 215 Bytes

512Bytes
&H0BFF

&H0C00 Friday [128 Set]
128 x 4 = 215 Bytes

512Bytes

&H0DFF
&H0E00 NON USED AREA

512Bytes
&H0FFF

[

Practical Class 11 Programming Microcontrollers

Faculty of Electrical and Electronic Eng. 251 Automatic Control & Automation Dept.

Software:

The BASCOM-AVR compiler is used to make a program that writes and reads one byte from the EEPROM. BASCOM has
several embedded commands to control the I2C bus.

In BASCOM-AVR you irst have to con igure the ports you use for the SDA and SCL lines of the I2C bus. Then you send the
device address to select the EEPROM that is connected to the I2C bus. After that you send two bytes to the EEPROM to select
the address in the EEPROM to which you want to write the data. The last byte to send in a write sequence is the data byte.

$regfile = "m16def.dat"
$crystal = 2000000
$lib "I2C_TWI.LBX"
$baud = 9600
'---------------------------
Config Scl = Portc.0
Config Sda = Portc.1
Config Twi = 100000 '100KHZ
'---------------------------
Const Addressw = 160 '&B10100000 slave write address
Const Addressr = 161 '&B10100001 slave read address
'---------------------------
Dim Adres_h As Byte , Adres_l As Byte
Dim Rd_value As Byte , Wr_value As Byte
'---------------------------
Do
 Input "Wr_value:" , Wr_value
 Input "Adres_l:" , Adres_l
 Input "Adres_h:" , Adres_h

 Gosub Write_eeprom
 Gosub Read_eeprom

 Print "Error W: " ; Err
 print "Wr_value: " ; Wr_value

 Print "Error R: " ; Err
 Print "Rd_value: " ; Rd_value
Loop
End
'---------------------------
Write_eeprom:
 I2cstart 'Start condition
 I2cwbyte Addressw 'Slave address
 I2cwbyte Adres_h 'H address of EEPROM
 I2cwbyte Adres_l 'L address of EEPROM
 I2cwbyte Wr_value 'Value to write
 I2cstop 'Stop condition
 Waitms 10 'Wait for 10 milliseconds
Return
'---------------------------
Read_eeprom:
 I2cstart 'Generate start
 I2cwbyte Addressw 'Slave adsress
 I2cwbyte Adres_h 'H address of EEPROM
 I2cwbyte Adres_l 'L address of EEPROM
 I2cstart 'Repeated start
 I2cwbyte Addressr 'Slave address (read)
 I2crbyte Rd_value , Nack 'Read byte
 I2cstop 'Generate stop
Return
'---------------------------

